One, Two, Three Times an Intern

Kylie Simpson, Summer Intern at EDAX

Kylie ‘at home’ in the Applications Lab.

This summer was my third working for the EDAX Applications Team. It has been an amazing opportunity to be directly involved with research, customer support, and software testing here in Mahwah. I was able to continue with the APEX™ software testing that I worked on last summer which I found incredibly interesting because I’ve been able to observe the software evolve to best meet customer needs and improve in overall performance. I also had the chance to attend the Microscopy and Microanalysis (M&M) show in Baltimore, MD. This was an incredible experience for an undergraduate student, like me, interested in Materials Science and Microscopy. I was able to connect with people in the field, attend talks on topics at the forefront of Microscopy research, and present a poster that I have been helping out with this summer here at EDAX.

The majority of my time this year has been focused on helping Dr. Jens Rafaelsen, the head of the Mahwah Applications Team, with the data collection and analysis for a paper on the effects of Variable Pressure on EDS. Although Variable Pressure is an incredibly useful tool for studying SEM samples that are susceptible to charging, the introduction of gas to the specimen chamber has implications that must be considered when collecting EDS spectra. Additional gas particles in the SEM chamber lead to a scattering of the electron beam, known as beam spread or beam skirting.

In order to study and quantify this phenomenon, we used a double insulated Faraday cup with a 10 µm aperture, pictured below, to measure the unscattered beam at different pressures and working distances. We also modeled this beam scattering using Monte Carlo simulations that consider the SEM geometry as well as the type of gas in the chamber, which vary based on the type of SEM. Based on our experimental and theoretical results, we determined that as much as 85% of the electron beam is scattered outside of the 10 µm diameter high pressures of 130 Pa. This is much more scattering than we had anticipated, based on previous papers on this subject, making these results incredibly important for anyone using variable pressure in the SEM.

Double insulated Faraday cup with a 10 µm aperture.


Unscattered Beam Percentage vs. Pressure: Theoretical

Unscattered Beam Percentage vs. Pressure: Experimental

Overall, I am very thankful for the opportunities that EDAX has given me this summer and in the past. As a member of the Applications Team, I was able to work alongside the Engineering, Software Development, Customer Support, and Sales teams in order to help provide customers with the best analysis tools for their needs. I also gained a deeper understanding of the research, data collection, and analysis processes for writing a paper to be published: a truly incredible experience for an undergraduate student. Above all, the plethora of knowledge and experience of those here at EDAX and their willingness to share this information with me and others has been the most valuable aspect of my time here.

Leave a ReplyCancel reply