A Bit of Background Information

Dr. Jens Rafaelsen, Applications Engineer, EDAX

Any EDS spectrum will have two distinct components; the characteristic peaks that originate from transitions between the states of the atoms in the sample and the background (Bremsstrahlung) which comes from continuum radiation emitted from electrons being slowed down as they move through the sample. The figure below shows a carbon coated galena sample (PbS) where the background is below the dark blue line while the characteristic peaks are above.

Carbon coated galena sample (PbS) where the bacground is below the dark blue line while the characteristic peaks are above.

Some people consider the background an artefact and something to be removed from the spectrum (either through electronics filtering or by subtracting it) but in the TEAM™ software we apply a model based on Kramer’s law that looks as follows:where E is the photon energy, N(E) the number of photons, ε(E) the detector efficiency, A(E) the sample self-absorption, E0 the incident beam energy, and a, b, c are fit parameters¹.

This means that the background is tied to the sample composition and detector characteristic and that you can actually use the background shape and fit/misfit as a troubleshooting tool. Often if you have a bad background, it’s because the sample doesn’t meet the model requirements or the data fed to the model is incorrect. The example below shows the galena spectrum where the model has been fed two different tilt conditions and an overshoot of the background can easily be seen with the incorrect 45 degrees tilt. So, if the background is off in the low energy range, it could be an indication that the surface the spectrum came from was tilted, in which case the quant model will lose accuracy (unless it’s fed the correct tilt value).


This of course means that if your background is off, you can easily spend a long time figuring out what went wrong and why, although it often doesn’t matter too much. To get rid of this complexity we have included a different approach in our APEX™ software that is meant for the entry level user. Instead of doing a full model calculation we apply a Statistics-sensitive Non-linear Iterative Peak-clipping (SNIP) routine². This means that you will always get a good background fit though you lose some of the additional information you get from the Bremsstrahlung model. The images below show part of the difference where the full model includes the steps in the background caused by sample self-absorption while the SNIP filter returns a flat background.

So, which one is better? Well, it depends on where the question is coming from. As a scientist, I would always choose a model where the individual components can be addressed individually and if something looks strange, there will be a physical reason for it. But I also understand that a lot of people are not interested in the details and “just want something that works”. Both the Bremsstrahlung model and the SNIP filter will produce good results as shown in the table below that compares the quantification numbers from the galena sample.

While there’s a slight difference between the two models, the variation is well within what is expected based on statistics and especially considering that the sample is a bit oxidized (as can be seen from the oxygen peak in the spectrum). But the complexity of the SNIP background is significantly reduced relative to the full model and there’s no user input, making it the better choice for the novice analyst of infrequent user.

¹ F. Eggert, Microchim Acta 155, 129–136 (2006), DOI 10.1007/s00604-006-0530-0
² C.G. RYAN et al, Nuclear Instruments and Methods in Physics Research 934 (1988) 396-402

Leave a ReplyCancel reply