Month: March 2018

Orbis XRF Analysis of Ceramic Monoliths

Dr. Bruce Scruggs, Product Manager XRF, EDAX

Over the last several months, I’ve had a couple of opportunities to analyze a ceramic monolith. For me, this was interesting because I’ve never analyzed one of these and they have been around for a long time. Ceramic monoliths have been used for decades to support metal catalysts, providing a large surface area for reactants to interact with the catalyst. One of the most common uses is found in the automotive catalytic converter. The car’s engine exhaust passes through the catalytic converter changing environmentally polluting gases (e.g. NOx, CO and residual hydrocarbons) into more innocuous ones. (Well, they used to be more innocuous anyway until some clever person decided that CO2 emissions were problematic as well. But, I digress.) Some quick literature reading suggests there is a renewed interest in these for other areas of application besides automotive emission control.

Ceramic monolith with hexagonal channels.

Ceramic monoliths can be made from a variety of ceramics or minerals depending on the application. While it’s true in some cases that the ceramic material is inactive, there are reactions where the ceramic substrate influences the catalytic reaction. Hence, material selection is important. Application of the catalytic metals onto the monolith is another critical step which influences the overall performance of the catalyst. In one typical application process, the untreated monolith is dipped into a liquid slurry of catalytic precursors and then calcined to activate the catalyst.

Ceramic monolith with square channels assembled in an external housing.

The initial goal for Orbis micro-XRF analysis was to analyze the metal distribution within the channels of the monolith. The monoliths were cross-sectioned to expose the interior of a plane of channels and the starting question was to look at the distribution of applied metals along the length of the channels. This is easy enough to do and we can clearly see distributions as we measure from the channel entrance to the center of the channel. It’s what you would expect when dipping a narrow tube in a slurry. But, we could also see distributions across the width of the channel as well. It’s not something I immediately thought about, but it makes sense as the slurry pools in the corner of the channels where two channel walls meet. As we discussed the results we had so far, the question of quantification came up. (Questions about quantification always come up!) As we discussed quantification methodologies, I was measuring at different points within a single channel and noticed that light element signals from the substrate (e.g. MgK or AlK) were sometimes present in the spectrum and sometimes not. This was a surprising result as the belief was that the catalytic wash coat was thick enough to completely absorb these signals. So, we also learned that mass coverage of the catalyst treatment was not as heavy as expected and this also provided some valuable insight into how to go about quantifying the catalytic distributions within the monolith.

If the Orbis micro-XRF analysis can provide data on how well the catalyst is distributed throughout the monolith channel, then this could potentially enable improvements in application techniques, which in turn may lead to dramatic improvements in catalyst efficiency. Overall, I thought that wasn’t bad for a couple of hours of instrument time!

EBSD in China

Sophie Yan, Applications Engineer, EDAX

EBSD in China is a big topic and it may sound as though I am not qualified to judge or to summarize the current situation. However, as I have worked with EBSD applications for several years, I have personal experience to share. More than ten years ago, I didn’t know about EBSD when I was studying the microstructure of materials. I was in Shanghai at that time and the environment was kind of open. It is probably that at that time in China: very few people knew about EBSD. Today the situation has changed enormously after just after 10+ years. Most researchers now try to put EBSD on their microscope. Microscopes including EDS and EBSD capability are standard in Chinese universities.

As an Applications Engineer, I visit research organizations, companies, and factories. I meet customers from many different backgrounds. Some of them are experts but more are new to microanalysis, especially students from science and engineering universities. They may each have a different focus, but they all have high expectations of EBSD. The professors care about the functions which can solve their issues. If there is currently no such function, then they often ask if we can add it. Entry level users prefer to learn how to operate the microscope and detectors quickly so that they get their results as soon as possible. The most frequent question asked is, what can EBSD do? Then I begin my introduction and I see that they become more and more interested. Sometimes they have high expectations. For example, when I demonstrate stress/strain analysis, I am often asked how to get stress value. This is a common misunderstanding because as an indirect way technique, EBSD can show the strain trend of materials, but it is beyond it to measure stress value.

My routine work includes introduction and training. Over a period of time, I can see a newcomer becoming more experienced and getting his own results, which makes me proud as a supporter. Whereas I care about the EBSD technology itself, the customers are more interested in learning how to use it in their work to solve some of their analysis challenges. They often give me new ideas and make me aware of other areas besides pure technology, for example, how to remove the users’ initial fear for EBSD. As a student majoring in material science I thought crystallography was very different from the reality I now understand. As a ‘teacher’ I am not focused on how to keep our users’ interest on EBSD and reminding to them to use it regularly. Fortunately, social media has improved the speed and consistency of our communication. When issues are solved quickly, people think the EBSD technique is less difficult. Effective communication contributes to the technology transfer.

The level of adoption of EBSD hardware in China is excellent, but the usage of and research into the technique is still in its infancy. I have spoken to many people about this issue. The interesting thing is that outsiders tend to give an optimistic perspective. An Australia professor told me several years ago that we should be taking a longer-term view and that there would probably be, a tremendous change in the next ten years. Quantitative results make a qualitative change. I hope he is right!

Fortunately, EBSD usage in China has increased greatly and continues to increase, which shows us a promising future.