Dr. René de Kloe, Applications Specialist, EDAX
A few weeks ago, I participated in a joint SEM – in-situ analysis workshop in Fuveau, France with Tescan electron microscopes and Newtec (supplier of the heating-tensile stage). One of the activities during this workshop was to perform a live in-situ tensile experiment with simultaneous EBSD data collection to illustrate the capabilities of all the systems involved. In-situ measurements are a great way to track material changes during the course of an experiment, but of course in order to be able to show what happens during such an example deformation experiment you need a suitable sample. For the workshop we decided to use a “simple” 304L austenitic stainless-steel material (figure 1) that would nicely show the effects of the stretching.
I received several samples a few weeks before the meeting in order to verify the surface quality for the EBSD measurements. And that is where the trouble started …
I was hoping to get a recrystallized microstructure with large grains and clear twin lamellae such that any deformation structures that would develop would be clearly visible. What I got was a sample that appeared heavily deformed even after careful polishing (figure 2).
This was worrying as the existing deformation structures could obscure the results from the in-situ stretching. Also, I was not entirely sure that this structure was really showing the true microstructure of the austenitic sample as it showed a clear vertical alignment that extended over grain boundaries.
And this is where I contacted long-time EDAX EBSD user Katja Angenendt at the MPIE in Düsseldorf for advice. Katja works in the Department of Microstructure Physics and Alloy Design and has extensive experience in preparing many different metals and alloys for EBSD analysis. From the images that I sent, Katja agreed that the visible structure was most likely introduced by the grinding and polishing that I did and she made some suggestions to remove this damaged layer. Armed with that knowledge and new hope I started fresh and polished the samples once more. And I had some success! Now there were grains visible without internal deformation and some nice clean twin lamellae (figure 3). But not everywhere. I still had lots of areas with a deformed structure and whatever I tried I could not get rid of those.
Back to Katja. When I discussed my remaining polishing problems she helpfully proposed to give it a try herself using a combination of mechanical polishing and chemical etching. But even after several polishing attempts starting from scratch and deliberately introducing scratches to verify that enough material was removed we could not completely get rid of the deformed areas. Now we slowly started to accept that this deformation was perhaps a true part of the microstructure. But how could that be if this is supposed to be a recrystallised austenitic 304L stainless steel?
Let’s take a look at the composition. In table 1 a typical composition of 304 stainless steel is given. The spectrum below (figure 4) shows the composition of my samples.
All elements are in the expected range except for Ni which is a bit low and that could bring the composition right at the edge of the austenite stability field. So perhaps the deformed areas are not austenite, but ferrite or martensite? This is quickly verified with an EBSD map and indeed the phase map below confirms the presence of a bcc phase (figure 5).
Having this composition right at the edge of the austenite stability field actually added some interesting additional information to the tensile tests during the workshop. Because if the internal deformation in the austenite grains got high enough, we might just trigger a phase transformation to ferrite (or martensite) with ongoing deformation.
Figure 6. Phase maps (upper row) and Grain Reference Orientation Deviation (GROD) maps (lower row) for a sequence of maps collected during the tensile test.
And that is exactly what we have observed (figure 6). At the start of the experiments the ferrite fraction in the analysis field is 7.8% and with increasing deformation the ferrite fraction goes up to 11.9% at 14% strain.
So, after a tough start the 304L stainless steel samples made the measurements collected during the workshop even more interesting by adding a phase transformation to the deformation. If you are regularly working with these alloys this is probably not unexpected behavior. But if you are working with many different materials you have to be aware that different types of specimen treatment, either during preparation or during experimentation, may have a large influence on your characterization results. Always be careful that you do not only see what you believe, but ensure that you can believe what you see.
Finally I want to thank the people of Tescan and Newtec for their assistance in the data collection during the workshop in Fuveau and especially a big thank you to Katja Angenendt at the Max Planck Institute for Iron Research in Düsseldorf for helpful discussions and help in preparing the sample.
Excellent Study & information