Crown Caps = Fresh Beer?

Dr. Felix Reinauer, Applications Specialist Europe, EDAX

A few days ago, I visited the Schlossgrabenfest in Darmstadt, the biggest downtown music festival in Hessen and even one of the biggest in Germany. Over one hundred bands and 12 DJs played all kinds of different music like Pop, Rock, Independent or House on six stages. This year the weather was perfect on all four days and a lot of people, celebrated a party together with well known, famous and unknown artists. A really remarkable fact is the free entrance. The only official fee is the annual plastic cup, which must be purchased once and is then used for any beverage you can buy in the festival area.

During the festival my friend and I listened to the music and enjoyed the good food and drinks sold at different booths in the festival grounds. In this laid-back atmosphere we started discussing the taste of the different kinds of beer available at the festival and throughout Germany. Beer from one brewery always tastes the same but you can really tell the difference if you try beer from different breweries. In Germany, there are about 1500 breweries offering more than 5000 different types of beer. This means it would take 13.5 years if you intended to taste a different beer every single day. Generally, breweries and markets must guarantee that the taste of a beer is consistent and that it stays fresh for a certain time.

In the Middle Ages a lot of people brewed their own beer and got sick due to bad ingredients. In 1516 the history of German beer started with the “Reinheitsgebot”, a regulation about the purity of beer. It says that only three ingredients, malt, water, and hops, may be used to make beer. This regulation must still be applied in German breweries. At first this sounds very unspectacular and boring, but over the years the process was refined to a great extent. Depending on the grade of barley roasting, the quantity of hops and the brewing temperature, a great variety of tastes can be achieved. In the early times the beer had to be drunk immediately or cooled in cold cellars with ice. To take beer with you some special container was invented to keep it drinkable for a few hours. Today beer is usually sold in recyclable glass bottles with a very tight cap keeping it fresh for months without cooling. This cap protects the beer from oxidation or getting sour.

Coming back to our visit to the Schlossgrabenfest; in the course of our discussions about the taste of different kind of beer we wondered how the breweries guarantee that the taste of the beer will not be influenced by storage and transport. The main problem is to seal the bottles gas-tight. We were wondered about the material the caps on the bottles are made of and whether they are as different as the breweries and maybe even special to a certain brewery.

I bought five bottles of beers from breweries located in the north, south, west, and east of Germany and one close to the EDAX office in Darmstadt. After opening the bottles, a cross section of the caps was investigated by EDS and EBSD. To do so, the caps were cut in the middle, embedded in a conductive resin and polished (thanks to René). The area of interest was the round area coming from the flat surface. The EDS maps were collected so that the outer side of the cap was always on the left side and the inner one on the right side of the image. The EBSD scans were made from the inner Fe metal sheet.

Let´s get back to our discussion about the differences between the caps from different breweries. The EDS spectra show that all of them are made from Fe with traces of Mn < 0.5 wt% and Cr, Ni at the detection limit. The first obvious difference is the number of pores. The cap from the east only contains a few, the cap from north the most and the cap from the middle big ones, which are also located on the surface of the metal sheet. The EBSD maps were collected from the centers of the caps and were indexed as ferrite. The grains of the cap from the middle are a little bit smaller and with a larger size distribution (10 to 100 microns) than the others, which are all about 100 microns. A remarkable misorientation is visible in some of the grains in the cap from the north.

Now let´s have a look at the differences on the inside and outside of the caps. EDS element maps show carbon and oxygen containing layers on both sides of all the caps, probably for polymer coatings. Underneath, the cap from the east is coated with thin layers of Cr with different thicknesses on each side. On the inside a silicone-based sealing compound and on the outside a varnish containing Ti can also be detected. The cap from the south has protective coatings of Sn on both sides and a silicon sealing layer can also be found on the inside. The composition of the cap from the west is similar to the cap from the east but with the Cr layer only on the outside. The large pores in the cap from the middle are an interesting difference. Within the Fe metal sheet, these pores are empty, but on both sides, they are filled with silicon-oxide. It seems that this silicon oxide filling is related to the production process, because the pores are covered with the Sn containing protective layers. The cap from the north only contains a Cr layer on the inside. The varnish contains Ti and S.

In summary, we didn’t expect the caps would have these significant differences. Obviously, the differences on the outside are probably due to the different varnishes used for the individual labels from each of the breweries. However, we didn’t think that the composition and microstructure of the caps themselves would differ significantly from each other. This study is far from being complete and cannot be used as a basis for reliable conclusions. However, we had a lot of fun before and during this investigation and are now sure that the glass bottles can be sealed to keep beer fresh and guarantee a great variety of tastes.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.