Month: September 2018

Endless Summer

Matt Nowell, EBSD Product Manager, EDAX

My family and I love the beach. We love to swim in the water, ride the waves, and play in the sand. Each summer we typically spend time at Sunset Beach, North Carolina. After years of seeing the cool stuff in the SEM, materials science and microscopy are always topics of discussion. This year, after enjoying the musical Hamilton, my wife was inspired to start working on a periodic table of elements rap song. My 13-year-old learned more about metalworking watching the History Channel show, Forged in Fire, where participants are challenged to make different weapons from assorted metallic sources. My favorite part was watching them evaluate different parts of a bicycle for heat-treatable steel to recycle. One of my favorite moments though was unpacking my beach shoes on the first day.

Generally, when we visit a beach, we try to bring home a shell or a piece of driftwood. However, when I was putting on my shoes for the first time, I noticed some sand was still present. My last beach trip had been to the Cayman Islands. I immediately noticed that this sand looked much different than the sand at Sunset Beach. I decided to save a little bit of each for some microscopy and microanalysis when I got back home.

When I looked at them both more closely, I saw that the sand from Sunset Beach (SB) on the left was much darker with black flecks, while the sand from Grand Cayman (GC) was much lighter. Thinking about the possible composition of the sand got me thinking about the bladesmithing competition held at the TMS annual meetings. One year, the team from UC Berkeley created a sword using magnetite found at local beaches using magnets. I thought it would be interesting to examine both of these sands with my SEM, EDS, and EBSD tools.


Sand grains from Sunset Beach.

Sand grains from Grand Cayman.

 

Initially I placed a bit of sand on an aluminum stub for SEM and EDS analysis. To reduce charging effects, I used the Low Vacuum capability of our FEI Teneo FEG-SEM, running at 0.1 mbar pressure. Images were collected using the Annular BackScatter (ABS) detector for atomic number contrast imaging. The sand grains from Sunset Beach were generally a little smaller than the Grand Cayman sand, as expected from visual inspection. Both sands exhibited cracking and weathering, which isn’t surprising in hindsight either. Many grains show flat surfaces, with internal structure visible with ABS imaging contrast.

I followed the imaging work with compositional analysis using EDS. The Sunset Beach sand was primarily composed of silicon and oxygen grains, which I suspect is quartz. The single brighter grain in Figure 3 was composed of an iron-titanium oxide. The Grand Cayman sand was primarily a calcium carbonate (Ca-C-O) material. The more needle shaped grains were primarily sodium and chlorine, which I assume is then salt that has solidified during the evaporation of the water. All this leads me to believe I really didn’t do a good job of cleaning my shoes after Grand Cayman.

While quartz being present in sand wasn’t surprising to me, the observation of calcium carbonate did remind me of some geological homework I did on the island. The water in Grand Cayman was very clear, which made it great for snorkeling. We swam around and saw a coral reef, a sunken ship, lots of fish, and stingrays. To understand why the water was so clear, I read that it was the lack of topsoil, and the erosion and runoff of topsail to the water that was responsible for the clarity. Looking again at this reference, it mentions that the top layer of the island is primarily composed of carbonates. The erosion of this material would explain the primary composition of the beach sand in my shoes.

Of course, the next step now is analyzing these sands with EBSD to determine the crystal structure of the materials. I’ve started the process. I’ve mounted some of the sand in epoxy, and hand polished to get some flat surfaces for analysis. I’m able to get EBSD patterns, but getting a good background is going to be tricky. I think the next step will be to watch my colleague Shawn Wallace’s webinar on Optimizing Backgrounds on MultiPhase samples to be presented on September 27th. You can also register for this here.

In the meantime, I’ll keep the sand samples on my desk to remind me of summer as the colder Utah winters will be approaching. It will be a good reason to stay inside and write the next chapter of this analysis for another blog post.

One, Two, Three Times an Intern

Kylie Simpson, Summer Intern at EDAX

Kylie ‘at home’ in the Applications Lab.

This summer was my third working for the EDAX Applications Team. It has been an amazing opportunity to be directly involved with research, customer support, and software testing here in Mahwah. I was able to continue with the APEX™ software testing that I worked on last summer which I found incredibly interesting because I’ve been able to observe the software evolve to best meet customer needs and improve in overall performance. I also had the chance to attend the Microscopy and Microanalysis (M&M) show in Baltimore, MD. This was an incredible experience for an undergraduate student, like me, interested in Materials Science and Microscopy. I was able to connect with people in the field, attend talks on topics at the forefront of Microscopy research, and present a poster that I have been helping out with this summer here at EDAX.

The majority of my time this year has been focused on helping Dr. Jens Rafaelsen, the head of the Mahwah Applications Team, with the data collection and analysis for a paper on the effects of Variable Pressure on EDS. Although Variable Pressure is an incredibly useful tool for studying SEM samples that are susceptible to charging, the introduction of gas to the specimen chamber has implications that must be considered when collecting EDS spectra. Additional gas particles in the SEM chamber lead to a scattering of the electron beam, known as beam spread or beam skirting.

In order to study and quantify this phenomenon, we used a double insulated Faraday cup with a 10 µm aperture, pictured below, to measure the unscattered beam at different pressures and working distances. We also modeled this beam scattering using Monte Carlo simulations that consider the SEM geometry as well as the type of gas in the chamber, which vary based on the type of SEM. Based on our experimental and theoretical results, we determined that as much as 85% of the electron beam is scattered outside of the 10 µm diameter high pressures of 130 Pa. This is much more scattering than we had anticipated, based on previous papers on this subject, making these results incredibly important for anyone using variable pressure in the SEM.

Double insulated Faraday cup with a 10 µm aperture.


Unscattered Beam Percentage vs. Pressure: Theoretical

Unscattered Beam Percentage vs. Pressure: Experimental

Overall, I am very thankful for the opportunities that EDAX has given me this summer and in the past. As a member of the Applications Team, I was able to work alongside the Engineering, Software Development, Customer Support, and Sales teams in order to help provide customers with the best analysis tools for their needs. I also gained a deeper understanding of the research, data collection, and analysis processes for writing a paper to be published: a truly incredible experience for an undergraduate student. Above all, the plethora of knowledge and experience of those here at EDAX and their willingness to share this information with me and others has been the most valuable aspect of my time here.

Down Memory Lane

Sia Afshari, Global Marketing Manager, EDAX

For years I have been attending the Denver X-ray conference (DXC) and it is hard when it coincides with the Microscopy and Microanalysis Conference (M&M) as it has a few times in the past several years. It is just difficult for me to accept that the overlap is not avoidable!

My interests are twofold, marketing activities where my main responsibility lie, and technical sessions which still pique my curiosity and which are beneficial for future product development. In the past couple of years at M&M, it has been great to attend sessions devoted to the 50 year anniversaries of electron microscopy, technical evolution, and algorithms, where my colleagues have either been the subject of presentations or have given papers. I have had the fortune to meet and, in some cases, to reacquaint with some of the main contributors to the scientific advancement of electron microscopy.

Being at M&M, I have missed the final years of attendance at DXC of the “old-timers” who have retired. These are gentlemen, in the true meaning of the word, whom I have had the honor of knowing for over 30 years and who have been more than generous with their time with me. I recognize most of all their devotion and contribution in advancing x-ray analysis to where it is today. Their absence will be felt especially in the development of methodology and algorithm. As a friend, who was frustrated with the lack of availability of scientists with a deep knowledge in the field, recently put it, “these guys don’t grow on trees.”

Back at M&M this year, I listened to Frank Eggert talking about the “The P/B Method. About 50 Years a Hidden Champion”, and he brought back many memories. I recognized most of his referenced names, and the fact that they are no longer active in the industry! Looked around the room, I saw more people of the same hair color as mine (what is left). I thought about the XRF/XRD guys I used to know and who are also no longer around the industry. The old Pete Seeger song popped up in my mind with a new verse as; “where have all the algorithmic guys gone?”