From Collecting EBSD at 20 Patterns per second (pps) to Collecting at 4,500 pps

John Haritos, Regional Sales Manager Southwest USA. EDAX

I recently had the opportunity to host a demo for one of my customers at our Draper, Utah office. This was a long-time EDAX and EBSD user, who was interested in seeing our new Velocity CMOS camera, and to try it on some of their samples.

When I started in this industry back in the late 90s, the cameras were running at a “blazing” 20 points per second and we all thought that this was fast. At that time, collection speed wasn’t the primary issue. What EBSD brought to the table was automated orientation analysis of diffraction patterns. Now users could measure orientations and create beautiful orientation maps with the push of a button, which was a lot easier than manually interpreting these patterns.

Fast forward to 2019 and with the CMOS technology being adapted from other industries to EBSD we are now collecting at 4,500 pps. What took hours and even days to collect at 20 pps now takes a matter of minutes or seconds. Below is a Nickel Superalloy sample collected at 4,500 pps on our Velocity™ Super EBSD camera. This scan shows the grain and twinning structure and was collected in just a few minutes.

Figure 1: Nickel Superalloy

Of course, now that we have improved from 20 pps to 4,500 pps, it’s significantly easier to get a lot more data. So the question becomes, how do we analyze all this data? This is where OIM Analysis v8™ comes to the rescue for the analysis and post processing of these large data sets. OIM Analysis v8™ was designed to take advantage of 64 bit computing and multi-threading so the software can handle large datasets. Below is a grain size map and a grain size distribution chart from an Aluminum friction stir weld sample with over 7 Million points collected with the Velocity™ and processed using OIM Analysis v8™. This example is interesting because the grains on the left side of the image are much larger than the grains on the right side. With the fast collection speeds, a small (250nm) step size could still be used over this larger collection area. This allows for accurate characterization of grain size across this weld interface, and the bimodal grain size distribution is clearly resolved. With a slower camera, it may be impractical to analyze this area in a single scan.

Figure 2: Aluminum Friction Stir Weld

In the past, most customers would setup an overnight EBSD run. You could see the thoughts running through their mind: will my sample drift, will my filament pop, what will the data look like when I come back to work in the morning? Inevitably, the sample would drift, or the filament would pop and this would mean the dreaded “ugh” in the morning. With the Velocity™ and the fast collection speeds, you no longer need to worry about this. You can collect maps in a few minutes and avoid this issue in practice. It’s a hard thing to say in a brochure, but its easy to appreciate when seeing it firsthand.

For me, watching my customer see the analysis of many samples in a single day was impressive. These were not particularly easy samples. They were solar cell and battery materials, with a variety of phases and crystal structures. But under similar conditions to their traditional EBSD work, we could collect better quality data much faster. The future is now. Everyone is excited with what the CMOS technology can offer in the way of productivity and throughput for their EBSD work.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.