Month: July 2019

Hats Off/On to Dictionary Indexing

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

Recently I gave a webinar on dynamic pattern simulation. The use of a dynamic diffraction model [1, 2] allows EBSD patterns to be simulated quite well. One topic I introduced in that presentation was that of dictionary indexing [3]. You may have seen presentations on this indexing approach at some of the microscopy and/or materials science conferences. In this approach, patterns are simulated for a set of orientations covering all of orientation space. Then, an experimental pattern is tested against all of the simulated patterns to find the one that provides the best match with the experimental pattern. This approach does particularly well for noisy patterns.

I’ve been working on implementing some of these ideas into OIM Analysis™ to make dictionary indexing more streamlined for datasets collected using EDAX data collection software – i.e. OIM DC or TEAM™. It has been a learning experience and there is still more to learn.

As I dug into dictionary indexing, I recalled our first efforts to automate EBSD indexing. Our first attempt was a template matching approach [4]. The first step in this approach was to use a “Mexican Hat” filter. This was done to emphasize the zone axes in the patterns. This processed pattern was then compared against a dictionary of “simulated” patterns. The simulated patterns were simple – a white pixel (or set of pixels) for the major zone axes in the pattern and everything else was colored black. In this procedure the orientation sampling for the dictionary was done in Euler space.
It seemed natural to go this route at the time, because we were using David Dingley’s manual on-line indexing software which focused on the zone axes. In David’s software, an operator clicked on a zone axis and identified the <uvw> associated with the zone axis. Two zone axes needed to be identified and then the user had to choose between a set of possible solutions. (Note – it was a long time ago and I think I remember the process correctly. The EBSD system was installed on an SEM located in the botany department at BYU. Our time slot for using the instrument was between 2:00-4:00am so my memory is understandably fuzzy!)

One interesting thing of note in those early dictionary indexing experiments was that the maximum step size in the sampling grid of Euler space that would result in successful indexing was found to be 2.5°, quite similar to the maximum target misorientation for modern dictionary indexing. Of course, this crude sampling approach may have led to the lack of robustness in this early attempt at dictionary indexing. The paper proposed that the technique could be improved by weighting the zone axes by the sum of the structure factors of the bands intersecting at the zone axes.
However, we never followed up on this idea as we abandoned the template matching approach and moved to the Burn’s algorithm coupled with the triplet voting scheme [5] which produced more reliable results. Using this approach, we were able to get our first set of fully automated scans. We presented the results at an MS&T symposium (Microscale Texture of Materials Symposium, Cincinnati, Ohio, October 1991) where Niels Krieger-Lassen also presented his work on band detection using the Hough transform [6]. After the conference, we hurried back to the lab to try out Niels’ approach for the band detection part of the indexing process [7].
Modern dictionary indexing applies an adaptive histogram filter to the experimental patterns (at left in the figure below) and the dictionary patterns (at right) prior to performing the normalized inner dot-product used to compare patterns. The filtered patterns are nearly binary and seeing these triggered my memory of our early dictionary work as they reminded me of the nearly binary “Sombrero” filtered patterns– Olé!
We may not have come back full circle but progress clearly goes in steps and some bear an uncanny resemblance to previous ones. I doff my hat to the great work that has gone into the development of dynamic pattern simulation and its applications.

[1] A. Winkelmann, C. Trager-Cowan, F. Sweeney, A. P. Day, P. Parbrook (2007) “Many-Beam Dynamical Simulation of Electron Backscatter Diffraction Patterns” Ultramicroscopy 107: 414-421.
[2] P. G. Callahan, M. De Graef (2013) “Dynamical Electron Backscatter Diffraction Patterns. Part I: Pattern Simulations” Microscopy and Microanalysis 19: 1255-1265.
[3] S.I. Wright, B. L. Adams, J.-Z. Zhao (1991). “Automated determination of lattice orientation from electron backscattered Kikuchi diffraction patterns” Textures and Microstructures 13: 2-3.
[4] Y.H. Chen, S. U. Park, D. Wei, G. Newstadt, M.A. Jackson, J.P. Simmons, M. De Graef, A.O. Hero (2015) “A dictionary approach to electron backscatter diffraction indexing” Microscopy and Microanalysis 21: 739-752.
[5] S.I. Wright, B. L. Adams (1992) “Automatic-analysis of electron backscatter diffraction patterns” Metallurgical Transactions A 23: 759-767.
[6] N.C. Krieger Lassen, D. Juul Jensen, K. Conradsen (1992) “Image processing procedures for analysis of electron back scattering patterns” Scanning Microscopy 6: 115-121.
[7] K. Kunze, S. I. Wright, B. L. Adams, D. J. Dingley (1993) “Advances in Automatic EBSP Single Orientation Measurements.” Textures and Microstructures 20: 41-54.

A Cog’s Case for Corporate Utopia

David Durham, Regional Sales Manager, EDAX

Not too long ago I went to my optometrist to get an eye exam for some replacement glasses. My last pair had been stolen after my car was broken into in broad daylight during lunch at a restaurant in the Bay Area. (What the thief planned on doing with my prescription glasses is still a mystery to me.)

Figure 1: The old phoropter* (top) and the new phoropter** (bottom).

It had been at least a couple years since my last examination, but I was prepared to be guided through all the typical tests, culminating with that “giant-machine-with-multiple-lenses” pressed into my face to help the optometrist determine the prescription that would best correct the errors in my vision. I’d later learn that this machine is called a phoro-optometer, or more commonly a “phoropter.” And, contrary to my previous experiences with this instrument, it was now a super-sleek, slimmed down, digital version of the machine, using a computer controlled digital refraction system to cycle through the refraction options instead of using stacks of physical lenses that had to be manually cycled by the optometrist.

It was much smaller, quieter, faster, and easier than the version with which I was familiar. I was thoroughly impressed. But I was even more impressed when the instrument was pulled away and I saw the Ametek logo emblazoned on the side of it.

I couldn’t help but reflexively blurt out “Hey I work there!” to which the optometrist looked up from my file and began curiously interrogating me about my history in the eye care industry. Sadly, he quickly lost interest after I explained that I worked in a different division of Ametek that manufactures EDS, EBSD, and WDS systems.

After my exam, for some reason I felt a bit intimidated about not knowing more about Ametek’s business units outside of the EDAX niche to which I belong. I knew Ametek was a huge corporation, steadily growing larger over the decades — mainly by acquisition of smaller companies – but I’d never really grasped the sheer size and breadth of everything Ametek does. This wasn’t the first time I’ve been in this type of situation. Prior to joining EDAX/Ametek I worked for another scientific instrumentation corporation, slightly smaller than Ametek but still a similar type of behemoth with a wide range of companies making products that service comparable industries and applications. Even at that corporation my knowledge of the business outside of my business unit’s portfolio was very limited. These places are just so big!

Working at large corporations like these can, at times, be a little bit discouraging if you think of yourself as just a single cog in a machine with thousands of moving parts. Giant corporations certainly seem to have a bad reputation these days and I’ll admit I’ve experienced my fair share of corporation-induced angst over the years. Working within a large bureaucracy can make completing the smallest internal tasks overwhelming. Being in a smaller company that is acquired – I’ve been through two acquisitions — can be disruptive to business and cause a lot of anxiety.

But is there a good side to these mega-corporations? I think so.

I can find some important benefits that could be argued to outweigh the negative aspects, not just to the cogs like myself but also to the markets that they serve. Whether or not these apply to other more prominent mega-corporations is debatable, but I think they seem to be reasonable positive characteristics, at least from my experience in the scientific instrumentation field.

Having the brand name recognition has always been an advantage. Customers (and their procurement departments) are typically more willing to do business with companies that have a long history of manufacturing products. Being in business for multiple decades with a proven track record of having the resources to reliably deliver products to the market and consistently service its user-base generates heaps of reassurance for customers that a younger or smaller company just can’t provide. It works similarly for vendors as well – it turns out that people are always more willing to sell you stuff if they’re confident that your company will pay for it.

Being in a large corporation also offers a huge advantage in the ability to research and develop new technology and product improvements. This can come by brute force – having deeper pockets to invest more money into R&D – or even by utilizing the synergy between individual companies under the corporation’s umbrella. EDAX is a great example of this in a couple ways. Ametek’s purchase of a new business unit in 2014 facilitated the development of EDAX’s groundbreaking Octane Elite and Octane Elect EDS systems, allowing for speed and sensitivity that had never been achieved before in any other EDS system. Collaboration between EDAX and another sister company within the Materials Analysis Division of Ametek, ushered in the release of EDAX’s new Velocity™ highspeed CMOS EBSD camera, by far the fastest EBSD system available. Realization of these two milestones of innovation would have been significantly delayed without the help of Ametek’s resources.

Figure 2: The Octane Elite (left) and the Velocity™ Super (right), two of EDAX’s products that were developed, in part, with the help of other business units inside Ametek.

But what I think tends to be the best part is that, as long as a company is meeting its targets and things are humming along nicely, corporations – at least the good ones, in my opinion — are usually happy to just let the business unit do its own thing. Having an “if it ain’t broke don’t fix it” mentality is the ideal way to keep the key talent happy and keep the business growing and making money. It also makes it possible to retain some semblance of the original company culture that contributed to its success in the first place. This is the holy grail for us cogs – being able to keep that small business feel while also being able to take advantage of all the big business benefits at the same time. Again, EDAX is a good example of this, with many of EDAX’s employees being legacy staff hired on long before the EDAX acquisition. This tells me Ametek must be doing something right.

So, I guess it’s debatable. While we may be willingly marching our grandchildren into a dystopia where three or four companies own all the businesses in the world, there are some undeniable advantages that working for a big company brings as well. And I take some comfort in the fact there are some very intelligent and innovative people behind the curtains, trying to do good things to make their customers happy and generally improve the lives of everyone in the world. We may or may not see all the things like the better phoropters out there, but our lives are almost certainly benefited by them whether we realize it or not.

* Photo from https://en.wikipedia.org/wiki/Phoropter
** Photo from http://www.reichert.com/