Matt Nowell, EBSD Product Manager, EDAX
I always liked the commercial that asked,” How many licks does it take to get to the center of a Tootsie Pop?”. I like contests where you estimate the number of M&Ms in a jar. Taking the concept away from delicious treats and moving towards something more technical, I’ve also enjoyed looking at the number of grains we need to measure with EBSD to get a good idea of the texture of a material.
Recently I’ve been working with our new Clarity™ Direct Electron Detector for EBSD. It’s the first commercial EBSD direct detector and will be launching soon. Traditionally, EBSD patterns are captured when the diffracted electrons strike a phosphor screen, where energy is converted into light photons, which are focused through a lens onto an imaging sensor, where the light photons are then converted back to electrons. However, a direct electron detector is just that, it captures the diffracted electrons directly. This allows us to count the electrons in an EBSD pattern directly.
Take the EBSD pattern collected from a nickel superalloy using the Clarity™ shown in Figure 1. For an EBSD pattern like this, remember that it has been background corrected to flat-field the image and improve the contrast. This is because the actual live EBSD pattern does not have a uniform intensity across the sensor, as shown in Figure 2. In this example, a background collected while imaging many grains was collected and subtracted from the live signal to produce the image in Figure 1. The background image has the spatial information for a specific orientation removed, while retaining the overall intensity gradient that is a function of the material of interest and the sample geometry. Note that the Clarity™ uses four direct electron detectors that are coupled together. The cross-hair image visible in Figure 2 shows the location of the seams between the detectors. These can be masked out of the image if desired but are quickly minimized with this background correction.
For Figure 1, a pixel at the center of the signal intensity contained approximately 10,000 electrons, and the average counts for all pixels was approximately 5,000 electrons. After background subtraction, I drew a line across the image, and the intensity profile across this line is shown in Figure 3. This profile shows that the final processed EBSD pattern has a dynamic range of about 1,700 electrons.
Figure 3. Line profile across the EBSD pattern in Figure 1 showing the dynamic range of the EBSD signal.
Now seeing that I could count the number of electrons in an EBSD pattern, I wanted to know how many I needed to get a usable EBSD pattern. I could decrease the exposure time, decrease the beam current, or do both. In this case, I continually decreased the exposure time to find where the EBSD pattern indexing started to fail. Figure 4 shows an EBSD pattern where the maximum number of electrons is 20 and the average number of electrons is 10. Even with this small amount of a signal, I was still able to index it with a confidence index of 0.92 and a fit of 0.6°, which indicates a good orientation solution. Talk about doing a lot with a little. This performance is enabled by the single electron sensitivity and zero readout noise of the detector, which makes this camera very exciting for low beam dose applications for beam-sensitive materials. I look forward to sharing more later.