Dr. Shangshang Mu, Applications Engineer, EDAX
Modern EDS systems are capable of quantitative analysis with or without standards. Unlike standard-less analysis, the k-ratio is either calculated in the software or based on internal standards. For analysis with standards, it is measured from a reference sample with known composition under the same conditions as the unknown sample. As an applications engineer, sometimes users ask me where to order these standards. Usually, I point them to the vendors that manufacture and distribute reference standards where you can order either off-the-shelf or customized standard blocks. In addition to these commercial mounts, I always tell them that they can request a set of mineral, glass, and rare earth element phosphate standards from the National Museum of Natural History free of charge! These are very useful standards that I’ve seen widely used in not only the geoscience world but also in various manufacturing industries. These free standards are also great for those graduate students with limited budgets and ideal for practicing sample preparation (yes, I was one of them).
This set of standards is officially called the Smithsonian Microbeam Standards and includes 29 minerals, 12 types of glass, and 16 REE phosphates. You can find out more information about these standards and submit a request form by clicking on the link below:
https://naturalhistory.si.edu/research/mineral-sciences/collections-overview/reference-materials/smithsonian-microbeam-standards
I mentioned sample preparation earlier. Yes, you read that right. These standards come in pill capsules containing from many tiny grains to a few larger ones and you need to mount them on your own (Figure 1).
Since you can get the information such as the composition, locality, and references for each standard from the website, what I want to discuss in this blog post is how to prepare them properly for X-ray analysis. The first tricky thing is to get them out of the capsules. The grains in Figure 1 are almost the largest in this set and you won’t get too many of this size. Some of the grains are even too tiny to be seen at first glance. For the majority that are really tiny, you need to tap the capsule a couple of times to release the grains that get stick to the capsule wall, then you can open the capsule very carefully and let the grains slide out with a little tapping.
For mounting, the easiest way is to mount the standards in epoxy using a mounting cup and let it cure. I did this in a fancy way to make it look like a commercial mount (Figure 2). I ordered a 30 mm diameter circular retainer with 37 holes used by commercial mount manufacturers (Figure 3) and filled the holes with standards on my own. I must admit that the retainer is not cheap, but you can machine the mount by yourself or have a machine shop do it for you. In addition to looking pretty, the retainer ensures a good layout so you can quickly locate the standards you need during microanalysis, and you can mount the same type of standards on one block and get rid of the hassle of frequently venting and pumping the SEM chamber to switch standard blocks.
To prevent the tiny grains from moving and floating up when pouring the epoxy mix, I placed the retainer upside down and pressed it onto a piece of sticky tape (Figure 4a) and positioned the grains on the sticky surface of the tape within the holes. When tapping the capsule to let the grains slide out and fall into the hole, the other holes were covered to prevent contamination (Figure 4b). These holes are small in diameter and pouring the epoxy mix directly will trap air bubbles in the hole to separate the grains from the epoxy mix. To overcome this problem, I filled up the hole by letting the epoxy mix drip down very slowly along the inner surface of the hole.
For general grinding, I start with wet 240 grit SiC sandpaper with subsequent use of 320, 400, 600, 800, and 1,200 grit wet SiC sandpapers. But coarser grits can grind off tiny grains in this case, so I would recommend starting with a relatively fine grit based on the sizes of the grains you receive and always use a light microscope or magnifier to check the grinding. For polishing abrasive, I used 1 micron and 0.3 micron alumina suspensions on a polishing cloth. For the grains used as standards or quantification in general, the surface needs to be perfectly flat. However, the napped polishing cloth tends to abrade epoxy and the grains at different rates, creating surface relief and edge rounding, especially on tiny grains. To mitigate this effect, the polishing should be checked under a light microscope constantly and stopped as soon as the scratches are removed. A vibratory final polishing with colloidal silica is optional. Followed by ultrasonic cleaning and carbon coating, the standard mount is ready to use.
Note that commercial mount manufacturers may prepare standards individually (especially for metal standards) and insert them into the holes from the back of the retainer and fasten them with retaining rings (Figure 5a). A benefit of this approach is that the standards on the mount are changeable, so you can load all the standards you need on one mount before microanalysis. I used to make several individual mounted standards that can fit into the retainer (Figure 5b) but this process is very time consuming and much trickier to keep the small surface flat during grinding and polishing.
Figure 5. a) The back of a commercial metal standard mount. b) A tiny cylindrical mount that can fit into the retainer holes.
This is definitely a good set of standards to keep in your lab. With EDAX EDS software, in addition to quantification with these standards, you can also use them to create a library and explore the Spectrum Matching feature. The next time you want to quickly determine the specific type of a mineral, you can simply collect a quick spectrum and click the “Match” button, and the software will compare the unknowns to the library you just created.