Dr. René de Kloe, Applications Specialist, EDAX
This last year has been different in many ways, both personally and at work. For me, it meant being in the office or working from home instead of being out and about and meeting customers and performing operator schools in person. This does not exactly mean that things are quieter, though! At home, I got confronted with lots of little maintenance things in and around my house that otherwise somehow manage to escape my attention. At work, lots of things vying for my attention have managed to land on my desk.
The upside is that with almost everything now being done through remote connections. I get to sit more at the microscope in the lab to work on customer samples, collect example datasets, perform system tests, and also practice collecting data on difficult samples so that I can support our customers better. To do that, I have the privilege of being able to choose which EBSD detector I want to mount, from the fast Velocity to the familiar Hikari to the sensitive Clarity Direct Electron System. But how do I decide what samples to use for such practice sessions?
Figure 1. A common garden snail (Cornu aspersum) and an empty shell used for the analysis.
In the past, I wrote about my habit of occasionally going “dumpster diving” to collect interesting materials (well, to be honest, I try to catch the things just before they land in the dumpster). That way, I have built up a nice collection of interesting alloys, rocks, and ceramics to keep me busy. But this time, I wanted to do something different, and an opportunity presented itself when I was working on a fun DIY project, a saddle stool for my daughter. On one of the days that I was shaping wood in my garden for the saddle-support, I noticed some garden snails moving about leisurely. These were the lucky chaps (Figure 1). While we occasionally feel the need to redecorate our walls to get a change of view, the snail’s home remains the same and follows him wherever he goes; sounds great! No need to do any decoration or maintenance, and always happy at home!
But all kidding aside, I have long been interested in the structure of these snail shells and have wanted to do microstructural analysis on one. So, when I found an empty shell nearby belonging to one of its cousins that had perished, I decided to try to do some Scanning Electron Microscope (SEM) imaging and collect Electron Backscatter Diffraction (EBSD) data to figure out how the shell was constructed. The fragility of the shell and especially the presence of organic material in between the carbonate crystals that make up the shell makes them challenging for EBSD, so I decided to mount my Clarity Detector and give it a very gentle try.
The outer layer that contains the shell’s color was already flaking off, so I had nice access to the shell’s outer surface without the need to clean or polish it. And with the Gatan PECS II Ion Mill that I have available, I prepared a cross-section of a small fragment. I was expecting a carbonate structure like you see in seashells and probably all made of calcite, which is the stable crystal form of CaCO3 at ambient temperatures. What I found was quite a bit more exotic and beautiful.
In the cross-section, the shell was made up of multiple layers (Figure 2). First, on the inside, a strong foundation made of diagonally placed crossed bars, then two layers of well-organized small grains, was topped by an organic layer containing the color markings.
Figure 2. A PECS II milled cross-section view of the shell with different layers. The dark skin on the top is the colored outer layer.
At the edge of the PECS II prepared cross-section, a part of the outer shell surface remained standing, providing a plan view of the structure just below the surface looking from the inside-out. In the image (Figure 3), a network of separated flat areas can be recognized with a feather-like structure on the top, which is the colored outer surface of the shell. An EDS map collected at the edge suggests that the smooth areas are made up of Ca-rich grains, which you would expect from a carbonate structure. Still, the deeper “trenches” contain an organic material with a higher C and O content, explaining why the shell is so beam-sensitive.
Figure 3. A plan view SEM image of the structure directly below the colored surface together with EDS maps showing the C (purple), O (green), and Ca (blue) distribution.
The EBSD data was collected from the outer surface, where I could peel off the colored organic layer. This left a clean but rough surface that allowed successful EBSD mapping without further polishing.
My first surprise here was the phase. All the patterns that I saw were not of calcite but aragonite (Figure 4). This form of calcium carbonate is stable at higher temperatures and forms nacre and pearls in shells in marine and freshwater environments. I was not expecting to see that in a land animal.
Figure 4. An aragonite EBSD pattern and orientation determination.
The second surprise was that the smooth areas that you can see in Figure 3 are not large single crystals but consist of a very fine-grained structure with an average grain size of only 700 nm (Figure 5). The organic bands are clearly visible by the absence of diffraction patterns – the irregular outline is caused by projection due to the surface topography.
Figure 5. Image Quality (IQ) and aragonite IPF maps of the outer surface of the shell. The uniform red color and (001) pole figure indicate a very strong preferred crystal orientation.
After this surface map, I wanted to try something more challenging and see if I could get some information on the crossbar area underneath. At the edge of the fractured bit of the shell, I could see the transition between the two layers with the crossbars on the left, which were then covered by the fine-grained outer surface (Figure 6).
Figure 6. An IQ map of the fracture surface. The lower left area shows the crossbar structure, then a thin strip with the fine-grained structure, and at the top right some organic material remains.
Because the fractured sample surface is very rough, EBSD patterns could not be collected everywhere. Nevertheless, a good indication of the microstructure could be obtained. The IPF map (Figure 7) shows the same color as the previous map, with all grains sharing the same crystal direction pointing out of the shell.
Figure 7. An IPF map showing the crystal direction perpendicular to the shell surface. All grains share the same color indicating that the [001] axes are aligned.
Figure 8. An IPF map along Axis 2 showing the in-plane crystal directions with corresponding color-coded pole figures.
Figure 9. Detail of the IPF map of the crossbar area with superimposed crystal orientations.
I often have a pretty good idea of what to expect regarding phases and microstructure in manufactured materials. Still, I am often surprised by the intricate structures in the smallest things in natural materials like these snail shells.
These maps indicate a fantastic level of biogenic crystallographic control in the snail shell formation. First, a well-organized interlocked fibrous layer with a fixed orientation relationship is then covered by a smooth layer of aragonite islands, bound together by an organic structure, and then topped by a flexible, colored protective layer. With such a house, no redecoration is necessary. Home sweet home indeed!
hello, can I ask you something about OIM analysis? I want to know what I should open ctf file of the material containing hexagonal phase by using OIM software. I think the function “rotate basis by 30 degree for hexagonal” when opening the ctf file. so I cannot specify correct hexagonal axis and analyze axis/angle misorientation for hexagonal because and are transposed