Matt Nowell, EBSD Product Manager, EDAX
Back in my early days of installing some of the first EBSD systems in the world, one of the issues I had was figuring out how to demonstrate the system’s performance and how to help users operate their systems to get that same performance. As EBSD users know, this technique requires a certain level of sample preparation to obtain useable patterns and good quality maps. Because of this, I would bring my own previously prepared samples to set up a system. However, I generally would not leave these behind. This encouraged customers to figure out sample preparation before using their EBSD system.
After a few of these visits, we decided it would be beneficial to provide users with standard samples that could be left with the systems. To do this, we selected the material, prepared it for EBSD, and then packaged it for delivery. The question at that point was, ” what material do we use?”
We wanted something that would produce good EBSD patterns, not significantly degrade over time, and was something we could prepare ourselves. One of the materials EBSD had consistent success with early on, and still do today, is nickel-based superalloys. These materials have a higher average atomic number than aluminum alloys for stronger EBSD pattern intensity, large enough grains for work on both tungsten and FEG source SEMs, and can sit in a lab for years while still producing good EBSD patterns after the initial preparation. This led us to select Inconel 600 as our standard material.
It also led to it being one of the most well-characterized alloys by EBSD globally, even if the results are not all published. We have used our nickel standard to test all our detectors, from early SIT video cameras, to the first DigiView CCD cameras, the high-speed Velocity CMOS cameras, and now the Clarity Super direct-detector system. This material gives us a consistent reference point to better understand performance. We have also used the material for validating PRIAS™ imaging, NPAR™ processing, and OIM Matrix™ indexing.
Figure 1. An EBSD IQ map with random grain boundaries drawn as black lines, primary twins drawn as red lines, and secondary twins drawn as blue lines.
Several interesting microstructural features can be measured with these alloys. First, a high fraction of twin boundaries are typically present within the nickel samples. Figure 1 shows an EBSD Image Quality (IQ) map with random grain boundaries drawn as black lines, primary twins drawn as red lines, and secondary twins drawn as blue lines. We can also show grain maps with this high twin fraction, where grains are determined from the measured orientations and then randomly colored while including and excluding the twins in the grain grouping algorithm. Figure 2a shows the grain map, including the twin boundaries, while Figure 2b shows the grain map excluding the twin boundaries. There is a significant difference in effective grain size between these two microstructure views. Finally, we know that the twinning plane in face-centered cubic nickel alloys is the (111) plane. We can display the (111) plane trace on both sides of the twin boundaries, as shown in Figure 3.
Figure 2. a) A grain map that includes the twin boundaries. b) A grain map excluding the twin boundaries.
Figure 3. Combined IQ and IPF orientation map with (111) plane traces shown on both sides of selected twin boundaries.
Now you have some idea of what you can measure with your EDAX EBSD nickel standard.