My Unique Lab Partner

Dr. Shangshang Mu, Applications Engineer, EDAX

As an applications engineer, it is always fun to play with cutting-edge products. Last year, I got an exciting new lab partner, an Orbis PC Micro X-ray Fluorescence (Micro-XRF) Analyzer, which is an excellent complement to Scanning Electron Microscopy – Energy Dispersive Spectroscopy (SEM-EDS)-based X-ray microanalysis.

Figure 1. The Orbis PC Micro-XRF Analyzer.

For those of you who are not familiar with Micro-XRF, it is a technique similar to Energy Dispersive Spectroscopy (EDS) in that they both detect generated X-rays after interaction with the sample. For EDS, X-rays are generated by electrons boarding the sample, while in a Micro-XRF unit, fluorescent X-rays are excited by high-energy X-rays emitted from the X-ray tube. Silicon Drift Detectors (SDDs) are used for X-ray detection in modern EDS and Micro-XRF systems. Data collection is also similar because it is possible to use either one to do qualitative and quantitative analysis, mapping, and linescan.

This benchtop Orbis PC analyzer utilizes the benefits of conventional XRF while implementing micro-spot X-rays down to 30 μm by employing a polycapillary technique with a moveable stage. For higher Z elements, it improves the detection limits ten times or more than SEM-EDS. It uses higher-energy X-rays to generate lines that are not detectable with EDS, such as Sr L, Zr K, and Ag K, which is useful when lower energy lines overlap in the EDS spectrum. The industry-exclusive motorized turret, integrating video and X-ray optics, provides coaxial X-ray analysis and sample view perpendicular to the sample surface for more accurate sample positioning and no shadowing of the X-ray beam. The analysis is non-destructive, with no beam damage to the sample, and minimal sample preparation is required.

Grinding and polishing of the sample are not generally required, and conductivity is not an issue. Sample loading is flexible in that thicker samples can be loaded directly on the stage, and thinner samples, particulates, and fibers can be mounted. The sample shape and height can be irregular, and the large sample chamber in this benchtop Micro-XRF unit can accommodate a wide range of sample sizes. Samples can be run either in low-vacuum mode or air mode, allowing the analysis of liquids or samples that will dehydrate in a vacuum. An SEM-based Micro-XRF system does not have many of the benefits brought by this benchtop unit. Once the sample is loaded in an SEM chamber, all the requirements of SEM samples apply. The chamber size and stage of an SEM largely limit the sample dimensions, and non-conductive samples must be coated. The ability to analyze samples that cannot tolerate a vacuum atmosphere is also lost.

Figure 2. The unique four-position turret. Position 1 is the high magnification video, and position 2 is the 30 μm polycapillary X-ray optic. Position 3 and 4 are 1 mm and 2 mm collimators, respectively.

Figure 3. The video (green) and X-ray (dark red) paths of the Orbis Analyzer are coaxial and perpendicular to the sample surface, which means the X-ray path is observable in the video, and there is no shadowing of the X-ray beam. If the X-ray path is non-coaxial (red), it can be blocked by the high topography object.

Since SEM-EDS and Micro-XRF share many similarities and work together to accomplish the complete needs of spectral analysis (see the How to Correlate Micro-XRF and SEM-EDS for Optimal X-ray Characterization of Materials article in the March 2022 issue of the Insight newsletter), I always like to correlate them from every aspect. The absorption edge is the most recent one that caught my attention. For EDS users, if you ever take a close look at the Bremsstrahlung background modeling in the APEX™ software, it is not a smooth curve but exhibits sharp edges (e.g., Figure 4). These are absorption edges, indicating the minimum energy required for an element to eject an electron from its core orbital to create a vacancy. For example, the absorption edge of Ni K lies at approximately 8.33 keV. As the electron energy reaches this value, there is a huge spike in energy attenuation because this is the point that the excitation of Ni K lines begins (Figure 5). The Mass Absorption Coefficient quantitatively represents each element’s absorption of energy. The self-absorption of X-ray photons in a specimen is the dominant effect in EDS, as well as the Bremsstrahlung background distribution shape. The mass absorption coefficient jumps visibly influence the spectrum, mainly in the soft X-ray region. Our Bremsstrahlung background modeling includes these absorption edges for fine control and accurate background correction.

Figure 4. The absorption edge of Fe K at approximately 7.11 keV in an EDS spectrum.

Figure 5. The absorption edges of Cr, Fe, and Ni K lines.

The absorption edge plays an extraordinary role in Micro-XRF since the design of primary beam filters employs the knowledge of absorption edges. The Orbis PC unit is equipped with six primary beam filters to preferentially absorb X-rays at certain ranges to reduce the background to improve detection limits and eliminate artifact peaks. The filter wheel is placed between the X-ray tube and X-ray optic, so the X-rays scattered by the filter do not reach the sample (Figure 6). Only X-rays focused by the optic or collimated by the collimator reach the sample for accurate sample targeting. Figure 7 shows the background in the spectrum if the X-rays generated from the X-ray tube are exposed to a Ni filter. There is a strong correlation between the background in this figure and the graph illustration in Figure 5. The X-ray attenuation decreases as the absorption edge at approximately 8.33 keV is approached in Figure 5. This coincides with more and more of the tube X-rays penetrating through the filter and being present in the spectrum. Once the energy reaches 8.33 keV, there is a sudden increase in the absorption of X-rays shown in Figure 5, and this is why a huge amount of the background signal is absent in Figure 7 since most of the signal is now absorbed by the Ni filter. After the significant jump at the absorption edge, the attenuation continues to decrease as energy increases in Figure 5. This correlates to the background getting higher and higher in Figure 7 since more and more tube X-rays continue to penetrate through the Ni filter. The area with the lowest background signal in Figure 7 is the high-sensitivity region where the Ni filter cleans up the spectrum, allowing true elemental peaks of interest to show up. Figure 8 is an example of the detection limits of As in an As2O3 sample. The Al-heavy and Ni filters significantly increase the peak-to-background ratio to push the detection limit to a single-digit ppm-level.

Figure 6. Schematic of filter wheel design in Orbis system.

Figure 7. Background spectrum from the X-ray tube after being exposed to a Ni filter.

Figure 8. A spectrum overlay of As2O3 was collected using an Orbis PC without a filter (red), with Al-heavy (blue), and Ni (green) filters.

Expect a few new application notes and experiment briefs from this unique lab partner!

Leave a ReplyCancel reply