Improved IPF Color Palettes

Will Lenthe, Principal Software Engineer, EDAX

Most IPF color schemes have several shortcomings:

  1. Although red, green, and blue are placed at a high symmetry axis, the remaining colors are not uniformly distributed
  2. Saturated rainbow palettes are not perceptually uniform, so the same orientation gradient will have different apparent intensities when centered around different orientations
  3. Groups with two or four high symmetry directions do not have a natural mapping to three principal colors
  4. Choosing red and green as principal colors result in poor contrast for individuals with red-green color vision deficiency (CVD)

OIM Analysis™ v9 implements four new Inverse Pole Figure (IPF) color palettes to address these issues, as shown in Figure 1. For fundamental sectors with three principal directions, CVD colors replace green with yellow for the second principal color. For fundamental sectors with four principal directions, red, yellow, green, and blue are used for traditional colors, and red, yellow, cyan, and blue are used for CVD colors. Notice that the new legends distribute colors smoothly while the old ones have large patches of red, green, and blue extending from the corners and sharp bands of yellow, cyan, and magenta.

Figure 1. The m3m (top) and m3 (bottom) IPF legend is shown from left to right for OIM Analysis v8 colors, new saturated colors, perceptually uniform colors, CVD saturated colors, and perceptually uniform CVD colors.

Figure 2. A nickel dataset is IPF colored with saturated (left) and perceptually uniform (right) color maps using traditional (top) and CVD (middle) colors. Notice that some significant orientation gradients in the KAM map (bottom left) are visible with perceptually uniform colors but may be invisible if the orientation falls in a low contrast region of the saturated color map. OIM Analysis v8 coloring is shown in the bottom right.

Figure 3. A partially recrystallized steel dataset is IPF colored with saturated (left) and perceptually uniform (right) color maps using traditional (top) and CVD (middle) colors. Notice that orientation gradients are over-emphasized in darker regions of the saturated color maps (blue and purple) and under-emphasized in brighter regions (green, yellow, and cyan).

Perceptual Uniformity

Perceptually uniform color maps are designed so that a constant size step in the data being colored results in an apparent color change of constant magnitude regardless of the starting value. The uniformity of a color map can be visualized by imposing a ripple onto a ramp, as shown in Figure 3 and described by Kovesi [1]. The ripple disappears in brighter regions of traditional saturated color maps but has a uniform relative intensity in perceptually uniform maps, as shown in Figure 4. The new perceptually uniform IPF colors in OIM Analysis v9 extend perceptually uniform cyclic color maps to a hemisphere by adding a white center point.

Figure 4. A perceptually uniform ramp is modified by a sine wave to create a test signal (green). The test signal is colored with a perceptually uniform black to white color map with maximum sine wave amplitude at the top of the image and minimum amplitude at the bottom. Note that the relative intensity of the ripple is the same at every gray level near the top edge and the ramp appears extremely smooth near the bottom edge. Figure adapted from Kovesi [1].

Figure 5. Traditional saturated color maps (top) are shown for heat (left) and rainbow (right) colors. Notice that the ripples are nearly invisible near red on both maps, yellow on the heat map, and green on the rainbow map. Perceptually uniform equivalents (bottom) sacrifice some color saturation/vividness to achieve a uniform sensitivity response across the entire map. Legends from Kovesi [1].

CVD Colors

Deuteranomaly (red-green CVD) is the most common form of CVD and is simulated in Figure 6 to illustrate how much ambiguity is introduced in traditional colors. CVD impacts roughly 1 in 12 men and 1 in 200 women, so CVD colors should be preferred for papers and presentations.

Figure 6. Deuteranomaly is simulated with increasing severity from left to right (normal, 30%, 70%, 100%/Deuteranopia) for the traditional (top) and CVD (bottom) saturated palettes. Notice that in the far-right column, the traditional map has different directions with the same color, while the CVD map is significantly less ambiguous.

Enhanced IPF saturated color palettes maintain a similar look and feel while more uniformly distributing the available gamut. Perceptually uniform IPF color palettes sacrifice the full use of the RGB gamut to render crystal directions with increased precision, and CVD colors avoid red-green ambiguity. Together these new palettes enable visualization and accurate interpretation of orientation data for the widest range of audiences.


  1. Kovesi, P. (2015). Good colour maps: How to design them. arXiv preprint arXiv:1509.03700.
  2. Nolze, G., & Hielscher, R. (2016). Orientations–perfectly colored. Journal of Applied Crystallography, 49(5), 1786-1802.

Leave a Reply Cancel reply