Elemental analysis

“Strained” Friendship

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

Don’t just read the title of this post and skip to the photos or you might think it is some soap opera drama about strained relations – instead, the title is, once again, my feeble attempt at a punny joke!

I was recently doing a little reference checking and ended up on the website for Microscopy and Microanalysis (the journal, not the conference). On my first glance, I was surprised to see my name in the bottom right corner. Looking closer, I noticed that the paper Matt Nowell, David Field and I wrote way back in 2011 entitled “A Review of Strain Analysis Using Electron Backscatter Diffraction” is apparently the most cited article in Microscopy and Microanalysis. I am pleased that so many readers have found it useful. I remember, at the time, that we were getting a lot of questions about the tools within OIM Analysis™ for characterizing local misorientation and how they relate to strain. It was also a time when HREBSD was really starting to gain some momentum and we were getting a lot of questions on that front as well. So, we thought it would be helpful to write a paper that hopefully would answer some practical questions on using EBSD to characterize strain. From all the citations, it looks as though we actually managed to achieve what we had strived for.

My co-authors on that paper have been great to work with professionally; but I also count them among my closest personal friends. David Field joined Professor Brent Adams’ research group at BYU way back in 1987 if my memory is correct. We both completed master’s degrees at BYU and then followed Brent to Yale in 1988 to do our PhDs together. David then went on to Alcoa and I went to Los Alamos National Lab. Brent convinced David to leave and join the new startup company TSL and I joined about a year later. David left TSL for Washington State University shortly after EDAX purchased TSL.

Before, I joined TSL, Matt Nowell* had joined the company and he has been at TSL/EDAX ever since. Even with all the comings and goings we’ve remained colleagues and friends.

I’ve been richly blessed by both their excellent professional talents and their fun spirited friendship. We’ve worked, traveled and attended conferences together. We’ve played basketball, volleyball and golf together. I must also brag that we formed the core of the soccer team to take on the Seoul National University students after ICOTOM 13 in Seoul. Those who attended ICOTOM 13 may remember that it was held shortly after the 2002 World Cup hosted jointly by Korea and Japan; in which Korea had such a good showing – finishing 4th. A sequel was played at SNU where the students pretty much trounced the rest of the world despite our best efforts 😊. Here are a few snapshots of us with our Korean colleagues at ICOTOM 13 – clearly, we were always snappy dressers!

* Don’t miss Matt’s upcoming webinar: “Applications of High-Speed CMOS Cameras for EBSD Microstructural Analysis”

A Lot of Excitement in the Air!

Sia Afshari, Global Marketing Manager, EDAX

After all these years I still get excited about new technologies and their resulting products, especially when I have had the good fortune to play a part in their development. As I look forward to 2019, there are new and exciting products on the horizon from EDAX, where the engineering teams have been hard at work innovating and enhancing capabilities across all product lines. We are on the verge of having one of our most productive years for product introduction with new technologies expanding our portfolio in electron microscopy and micro-XRF applications.

Our APEX™ software platform will have a new release early this year with substantial feature enhancements for EDS, to be followed by EBSD capabilities later in 2019. APEX™ will also expand its wings to uXRF providing a new GUI and advanced quant functions for bulk and multi-layer analysis.

Our OIM Analysis™ EBSD software will also see a major update with the addition of a new Dictionary Indexing option.

A new addition to our TEM line will be a 160 mm² detector in a 17.5 mm diameter module that provides an exceptional solid angle for the most demanding applications in this field.

Elite T EDS System

Velocity™, EDAX’s low noise CMOS EBSD camera, provides astonishing EBSD performance at greater than 3000 fps with high indexing on a range of materials including deformed samples.

Velocity™ EBSD Camera

Last but not least, being an old x-ray guy, I can’t help being so impressed with the amazing EBSD patterns we are collecting from a ground-breaking direct electron detection (DED) camera with such “Clarity™” and detail, promising a new frontier for EBSD applications!
It will be an exciting year at EDAX and with that, I would like to wish you all a great, prosperous year!

Common Mistakes when Presenting EBSD Data

Shawn Wallace, Applications Engineer, EDAX

We all give presentations. We write and review papers. Either way, we have to be critical of our data and how it is presented to others, both numerically and graphically.

With that said, I thought it would be nice to start this year with a couple of quick tips or notes that can help with mistakes I see frequently.

The most common thing I see is poorly documented cleanup routines and partitioning. Between the initial collection and final presentation of the data, a lot of things are done to that data. It needs to be clear what was done so that one can interpret it correctly (or other people can reproduce it). Cleanup routines can change the data in ways that can either be subtle (or not so subtle), but more importantly they could wrongly change your conclusions. The easiest routine to see this on is the grain dilation routine. This routine can turn noisy data into a textured dataset pretty fast (fig. 1).

Figure 1. The initial data was just pure noise. By running it iteratively through the grain dilation routine, you can make both grains and textures.

Luckily for us, OIM Analysis™ keeps track of most of what is done via the cleanup routines and partitioning in the summary window on either the dataset level or the partition level (fig. 2).

Figure 2. A partial screenshot of the dataset level summary window shows cleanup routines completed on the dataset, as well as the parameters used. This makes your processing easily repeatable.

The other common issue is not including the full information needed to interpret a map. I really need to look at 3 things to get the full picture for an EBSD dataset: the IPF map (fig. 3), the Phase Map (fig. 4) and the IPF Legend (fig. 5) of those phases. This is very important because while the colors used are the same, the orientations differ between the different crystal symmetries.

Figure 3. General IPF Map of a geological sample. Many phases are present, but the dataset is not complete without a legend and phase map. The colors mean nothing without knowing both the phase and the IPF legend to use for that phase.

Below is a multiple phase sample with many crystal symmetries. All use Red-Green-Blue as the general color scheme. By just looking at the general IPF map (fig. 3), I can easily get the wrong impression. Without the phase map, I do not know which legend I should be using to understand the orientation of each phase. Without the crystal symmetry specific legend, I do not know how the colors change over the orientation space. I really need all these legends/maps to truly understand what I am looking at. One missing brick and the tower crumbles.

Figure 5. With all the information now presented, I can actually go back and interpret figure 3 using figures 4 and 5 to guide me.

Figure 4. In this multiphase sample, multiple symmetries are present. I need to know which phase a pixel is, to know which legend to use.

 

 

 

 

 

 

 

 

 

 

 

 

 

Being aware of these two simple ideas alone can help you to better present your data to any audience. The fewer the questions about how you got the data, the more time you will have to answer more meaningful questions about what the data actually means!

Old Eyes?

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

I was recently asked to write a “Tips & Tricks” article for the EDAX Insight Newsletter as I had recently done an EDAX Webinar (www.edax.com/news-events/webinars) on Texture Analysis. I decided to follow up on one item I had emphasized in the Webinar. Namely, the need for sampling enough orientations for statistical reliability in characterizing a texture. The important thing to remember is that it is the number of grain orientations as opposed to the number of orientations measured. But that lead to the introduction of the idea of sub-sampling a dataset to calculate textures when the datasets are very large. Unfortunately, there was not enough room to go into the kind of detail I would have liked to so I’ve decided to use our Blog forum to cover some details about sub-sampling that I found interesting

Consider the case where you not only want to characterize the texture of a material but also the grain size or some other microstructural characteristic requiring a relatively fine microstructure relative to the grain size. According to some previous work, to accurately capture the texture you will want to measure approximately 10,000 grains [1] and about 500 pixels per average grain in order to capture the grain size well [2]. This would result in a scan with approximately 5 million datapoints. Instead of calculating the texture using all 5 million data points, you can use a sub-set of the points to speed up the calculation. In our latest release of OIM Analysis, this is not as big of a concern as it once was as the texture calculations have been multithreaded so they are fast even for very large datasets. Nonetheless, since it is very likely that you will want to calculate the grain size, you can use the area weighted average grain orientation for each grain as opposed to using all 5 million individual orientation measurements for some quick texture calculation. Alternatively, a sub-set of the points through random or uniform sampling of the points in the scan area could be used.

Of course, you may wonder how well the sub-sampling works. I have done a little study on a threaded rod from a local hardware store to test these ideas. The material exhibits a (110) fiber texture as can be seen in the Normal Direction IPF map and accompanying (110) pole figure. For these measurements I have simply done a normalized squared difference point-by-point through the Orientation Distribution Function (ODF) which we call the Texture Difference Index (TDI) in the software.


This is a good method because it allows us to compare textures calculated using different methods (e.g. series expansion vs binning). In this study, I have used the general spherical harmonics series expansion with a rank of L = 22 and a Gaussian half-width of  = 0.1°. The dataset has 105,287 points with 92.5% of those having a CI > 0.2 after CI Standardization. I have elected only to use points with CI > 0.2. The results are shown in the following figure.

As the step size is relatively coarse with respect to the grain size, I have experimented with using grains requiring at least two pixels before considering a set of similarly oriented points a grain versus allowing a single pixel to be a grain. This resulted in 9981 grains and 25,437 grains respectively. In both cases, the differences in the textures between these two grain-based sub-sampling approaches with respect to using the full dataset are small with the 1 pixel grain based sub-sampling being slight closer as would be expected. However, the figure above raised two questions for me: (1) what do the TDI numbers mean and (2) why do the random and the uniform sampling grids differ so much, particularly as the number of points in the sub-sampling gets large (i.e. at 25% of the dataset).

TDI
The pole figure for the 1000 random points in the previous figure certainly captures some of the characteristics of the pole figure for the full dataset. Is this reflected in the TDI measurements? My guess is that if I were to calculate the textures at a lesser rank, something like L = 8 then the TDI’s would go down. This is already part of the TDI calculation and so it is an easy thing to examine. For comparison I have chosen to look at four different datasets: (a) all of the data in the dataset above (named “fine”), (b) a dataset from the same material with a coarser step size (“coarse”) containing approximately 150,000 data points, (c) sub-sampling of the original dataset using 1000 randomly sampled datapoints (“fine-1000”) and (d) the “coarse” dataset rotated 90 degrees about the vertical axis in the pole figures (“coarse-rotated”). It is interesting to note that the textures that are similar “by-eye” show a general increase in the TDI as the series expansion rate increases. However, for very dissimilar textures (i.e “coarse” vs “coarse-rotated”) the jump to a large TDI is immediate.

Random vs Uniform Sampling
The differences between the random and uniform sampling were a bit curious so I decided to check the random points to see how they were positioned in the x-y space of the scan. The figure below compares the uniform and random sampling for 4000 datapoints – any more than this is hard to show. Clearly the random sampling is reasonable but does show a bit of clustering and gaps within the scan area. Some of these small differences show up with higher differences in TDI values than I would expect. Clearly, at L = 22 we are picking up quite subtle differences – at least subtle with respect to my personal “by-eye” judgement. It seems to me, that my “by-eye” judgement is biased toward lower rank series expansions.


Of course, another conclusion would be that my eyesight is getting rank with age ☹ I guess that explains my increasingly frequent need to reach for my reading glasses.

References
[1] SI Wright, MM Nowell & JF Bingert (2007) “A comparison of textures measured using X-ray and electron backscatter diffraction”. Metallurgical and Materials Transactions A, 38, 1845-1855
[2] SI Wright (2010) “A Parametric Study of Electron Backscatter Diffraction based Grain Size Measurements”. Practical Metallography, 47, 16-33.

Teaching is learning

Dr. René de Kloe, Applications Specialist, EDAX

Figure 1. Participants of my first EBSD training course in Grenoble in 2001.

Everybody is learning all the time. You start as a child at home and later in school and that never ends. In your professional career you will learn on the job and sometimes you will get the opportunity to get a dedicated training on some aspect of your work. I am fortunate that my job at EDAX involves a bit of this type of training for our customers interested in EBSD. Somehow, I have already found myself teaching for a long time without really aiming for it. Already as a teenager when I worked at a small local television station in The Netherlands I used to teach the technical things related to making television programs like handling cameras, lighting, editing – basically everything just as long as it was out of the spotlight. Then during my geology study, I assisted in teaching students a variety of subjects ranging from palaeontology to physics and geological fieldwork in the Spanish Pyrenees. So, unsurprisingly, shortly after joining EDAX in 2001 when I was supposed to simply participate in an introductory EBSD course (fig 1) taught by Dr. Stuart Wright in Grenoble, France, I quickly found myself explaining things to the other participants instead of just listening.

Teaching about EBSD often begins when I do a presentation or demonstration for someone new to the technique. And the capabilities of EBSD are such that just listing the technical specifications of an EBSD system to a new customer does not do it justice. Later when a system has been installed I meet the customers again for the dedicated training courses and workshops that we organise and participate in all over the world.

Figure 2. EBSD IPF map of Al kitchen foil collected without any additional specimen preparation. The colour-coding illustrates the extreme deformation by rolling.

In such presentations, of course we talk about the basics of the method and the characteristics of the EDAX systems, but then it always moves on to how it can help understand the materials and processes that the customer is working with. There, teaching starts working the other way as well. With every customer visit I learn something more about the physical world around us. Sometimes this is about a fundamental understanding of a physical process that I have never even heard of.

At other times it is about ordinary items that we see or use in our daily lives such as aluminium kitchen foil, glass panes with special coatings, or the structure of biological materials like eggs, bone, or shells. Aluminium foil is a beautiful material that is readily available in most labs and I use it occasionally to show EBSD grain and texture analysis when I do not have a suitable polished sample with me (fig 2) and at some point, a customer explained to me in detail how it was produced in a double layer back to back to get one shiny and one matte side. And that explained why it produces EBSD patterns without any additional preparation. Something new learned again.

Figure 3. IPF map of austenitic steel microstructure prepared by additive manufacturing.

A relatively new development is additive manufacturing or 3D printing where a precursor powdered material is melted into place by a laser to create complex components/shapes as a single piece. This method produces fantastically intricate structures (fig 3) that need to be studied to optimise the processing.

With every new application my mind starts turning to identify specific functions in the software that would be especially relevant to its understanding. In some cases, this then turns into a collaborative effort to produce scientific publications on a wide variety of subjects e.g. on zeolite pore structures (1, fig (4)), poly-GeSi films (2, fig (5)), or directional solidification by biomineralization of mollusc shells (3).

Figure 4. Figure taken from ref.1 showing EBSD analysis of zeolite crystals.

Figure 5. Figure taken from ref.2 showing laser crystallised GeSi layer on substrate.

Such collaborations continuously spark my curiosity and it is because of these kinds of discussions that after 17 years I am still fascinated with the EBSD technique and its applications.

This fascination also shows during the EBSD operator schools that I teach. The teaching materials that I use slowly evolve with time as the systems change, but still the courses are not simply repetitions. Each time customers bring their own materials and experiences that we use to show the applications and discuss best practices. I feel that it is true that you only really learn how to do something when you teach it.

This variation in applications often enables me to fully show the extent of the analytical capabilities in the OIM Analysis™ software and that is something that often gets lost in the years after a system has been installed. I have seen many times that when a new system is installed, the users invest a lot of time and effort in getting familiar with the system in order to get the most out of it. However, with time the staff that has been originally trained on the equipment moves on and new people are introduced to electron microscopy and all that comes with it. The original users then train their successor in the use of the system and inevitably something is lost at this point.

When you are highly familiar with performing your own analysis, you tend to focus on the bits of the software and settings that you need to perform your analysis. The bits that you do not use fade away and are not taught to the new user. This is something that I see regularly during the training course that I teach. Of course, there are the new functions that have been implemented in the software that users have not seen before, but people who have been using the system for years and are very familiar with the general operation always find new ways of doing things and discover new functions that could have helped them with past projects during the training courses. During the latest EBSD course in Germany in September a participant from a site where they have had EBSD for many years remarked that he was going to recommend coming to a course to his colleagues who have been using the system for a long time as he had found that the system could do much more than he had imagined.

You learn something new every day.

1) J Am Chem Soc. 2008 Oct 15;130(41):13516-7. doi: 10.1021/ja8048767. Epub 2008 Sep 19.
2) ECS Journal of Solid State Science and Technology, 1 (6) P263-P268 (2012)
3) Adv Mater. 2018 Sep 21:e1803855. doi: 10.1002/adma.201803855. [Epub ahead of print]

Endless Summer

Matt Nowell, EBSD Product Manager, EDAX

My family and I love the beach. We love to swim in the water, ride the waves, and play in the sand. Each summer we typically spend time at Sunset Beach, North Carolina. After years of seeing the cool stuff in the SEM, materials science and microscopy are always topics of discussion. This year, after enjoying the musical Hamilton, my wife was inspired to start working on a periodic table of elements rap song. My 13-year-old learned more about metalworking watching the History Channel show, Forged in Fire, where participants are challenged to make different weapons from assorted metallic sources. My favorite part was watching them evaluate different parts of a bicycle for heat-treatable steel to recycle. One of my favorite moments though was unpacking my beach shoes on the first day.

Generally, when we visit a beach, we try to bring home a shell or a piece of driftwood. However, when I was putting on my shoes for the first time, I noticed some sand was still present. My last beach trip had been to the Cayman Islands. I immediately noticed that this sand looked much different than the sand at Sunset Beach. I decided to save a little bit of each for some microscopy and microanalysis when I got back home.

When I looked at them both more closely, I saw that the sand from Sunset Beach (SB) on the left was much darker with black flecks, while the sand from Grand Cayman (GC) was much lighter. Thinking about the possible composition of the sand got me thinking about the bladesmithing competition held at the TMS annual meetings. One year, the team from UC Berkeley created a sword using magnetite found at local beaches using magnets. I thought it would be interesting to examine both of these sands with my SEM, EDS, and EBSD tools.

Sand grains from Sunset Beach
Sand grains from Sunset Beach.
Sand grains from Grand Cayman
Sand grains from Grand Cayman.

 

Initially I placed a bit of sand on an aluminum stub for SEM and EDS analysis. To reduce charging effects, I used the Low Vacuum capability of our FEI Teneo FEG-SEM, running at 0.1 mbar pressure. Images were collected using the Annular BackScatter (ABS) detector for atomic number contrast imaging. The sand grains from Sunset Beach were generally a little smaller than the Grand Cayman sand, as expected from visual inspection. Both sands exhibited cracking and weathering, which isn’t surprising in hindsight either. Many grains show flat surfaces, with internal structure visible with ABS imaging contrast.

I followed the imaging work with compositional analysis using EDS. The Sunset Beach sand was primarily composed of silicon and oxygen grains, which I suspect is quartz. The single brighter grain in Figure 3 was composed of an iron-titanium oxide. The Grand Cayman sand was primarily a calcium carbonate (Ca-C-O) material. The more needle shaped grains were primarily sodium and chlorine, which I assume is then salt that has solidified during the evaporation of the water. All this leads me to believe I really didn’t do a good job of cleaning my shoes after Grand Cayman.

While quartz being present in sand wasn’t surprising to me, the observation of calcium carbonate did remind me of some geological homework I did on the island. The water in Grand Cayman was very clear, which made it great for snorkeling. We swam around and saw a coral reef, a sunken ship, lots of fish, and stingrays. To understand why the water was so clear, I read that it was the lack of topsoil, and the erosion and runoff of topsail to the water that was responsible for the clarity. Looking again at this reference, it mentions that the top layer of the island is primarily composed of carbonates. The erosion of this material would explain the primary composition of the beach sand in my shoes.

Of course, the next step now is analyzing these sands with EBSD to determine the crystal structure of the materials. I’ve started the process. I’ve mounted some of the sand in epoxy, and hand polished to get some flat surfaces for analysis. I’m able to get EBSD patterns, but getting a good background is going to be tricky. I think the next step will be to watch my colleague Shawn Wallace’s webinar on Optimizing Backgrounds on MultiPhase samples to be presented on September 27th. You can also register for this here.

In the meantime, I’ll keep the sand samples on my desk to remind me of summer as the colder Utah winters will be approaching. It will be a good reason to stay inside and write the next chapter of this analysis for another blog post.

Down Memory Lane

Sia Afshari, Global Marketing Manager, EDAX

For years I have been attending the Denver X-ray conference (DXC) and it is hard when it coincides with the Microscopy and Microanalysis Conference (M&M) as it has a few times in the past several years. It is just difficult for me to accept that the overlap is not avoidable!

My interests are twofold, marketing activities where my main responsibility lie, and technical sessions which still pique my curiosity and which are beneficial for future product development. In the past couple of years at M&M, it has been great to attend sessions devoted to the 50 year anniversaries of electron microscopy, technical evolution, and algorithms, where my colleagues have either been the subject of presentations or have given papers. I have had the fortune to meet and, in some cases, to reacquaint with some of the main contributors to the scientific advancement of electron microscopy.

Being at M&M, I have missed the final years of attendance at DXC of the “old-timers” who have retired. These are gentlemen, in the true meaning of the word, whom I have had the honor of knowing for over 30 years and who have been more than generous with their time with me. I recognize most of all their devotion and contribution in advancing x-ray analysis to where it is today. Their absence will be felt especially in the development of methodology and algorithm. As a friend, who was frustrated with the lack of availability of scientists with a deep knowledge in the field, recently put it, “these guys don’t grow on trees.”

Back at M&M this year, I listened to Frank Eggert talking about the “The P/B Method. About 50 Years a Hidden Champion”, and he brought back many memories. I recognized most of his referenced names, and the fact that they are no longer active in the industry! Looked around the room, I saw more people of the same hair color as mine (what is left). I thought about the XRF/XRD guys I used to know and who are also no longer around the industry. The old Pete Seeger song popped up in my mind with a new verse as; “where have all the algorithmic guys gone?”