EBSD

Being more precise

Dr. Stuart Wright, Senior Scientist, Gatan/EDAX

The precision and accuracy of orientation measurements by electron backscatter diffraction (EBSD) have been of interest since the advent of EBSD [1, 2]. In contrast, reliability (in terms of correctly identifying the orientation at least within 5°) was of greater concern when indexing was first automated (there is a section of my thesis [3] devoted to precision, as well as Krieger Lassen’s thesis [4]). I’ve written a few papers on the subject [5 – 7], and there have been several more by other authors [8 – 11]. High-resolution EBSD (HREBSD) has shown success in markedly improving precision [12]. Now that dictionary indexing (DI) has become more common; there has been a resurgence in papers on the precision that can be achieved using DI [13 – 15]. I know that is a lot of references for a blog post, but I wanted to give you an idea of how many different research groups have studied angular precision in EBSD measurements – the references given are only a sampling; there are certainly more.

Will Lenthe and I have been working hard to improve the dictionary indexing capabilities in the EDAX OIM Matrix™ add-on module to EDAX OIM Analysis™. In addition, Will has added the ability to perform spherical indexing within OIM Matrix [16 – 17] (see Will’s “New Tools for EBSD Data Collection and Analysis” webinar for more information). These new capabilities will be available soon in OIM Analysis 9. I’m excited about the progress we’ve made. You will find OIM Matrix much easier to use and more robust. In addition, we’ve sped up many aspects of OIM Analysis, which will help with the big datasets routinely obtained with the EDAX Velocity™ cameras.

The precision of indexing via spherical indexing has recently been explored [18]. Using OIM Analysis 9, we’ve been exploring what we can achieve in terms of orientation precision with orientation refinement [19 – 21] applied to initial indexing results obtained by Hough transform-based indexing, dictionary indexing, and spherical indexing. We haven’t quantified our results yet. Still, the KAM maps (which indicate the orientation precision) we’ve obtained are so promising that I want to show our preliminary results. Our refinement method is essentially a hybrid of that proposed by Singh, Ram, and De Graef [19] and Pang, Larsen, and Schuh [21]. But for the spherical indexing, we also have implemented an additional refinement in the harmonic frequency space. Figure 1 shows some results I am excited to share.

Figure 1. KAM maps from nickel [22]. (Top row) As-indexed, (middle row) with NPAR for Hough-based indexing and refinement in the spherical harmonics for spherical indexing, and (bottom row) after real-space refinement. The first column is for Hough-based indexing, columns 2 – 4 are for dictionary indexing with different dictionary target disorientations, and columns 5 – 6 are for SI with different harmonic bandwidths.

It is pretty interesting that the KAM maps after refinement are all nearly the same, no matter which type of indexing was used to obtain the initial orientation measurements. We do not expect much plastic strain or permanent deformation in these samples, so the reduced KAM values are more of what we expect for the sample.

Here is another set of results for a silicon single crystal. The scan is approximately 1 x 1 mm with a 30 m step size. You can see the dramatic improvement in these results. Unfortunately, the two points with the largest KAM values are due to some dust particles on the sample’s surface.

Figure 2. KAM maps were constructed using Hough-based indexing, SI, and SI followed by refinement.

We are very excited to get these advancements into your hands and are putting in extra hours to get the software ready for release. We hope you are as precisely excited as we are to apply it to your samples!

[1] Harland CJ, Akhter P, Venables JA (1981) Accurate microcrystallography at high spatial resolution using electron backscattering patterns in a field emission gun scanning electron microscope. Journal of Physics E 14:175-182
[2] Dingley DJ (1981) A Comparison of Diffraction Techniques for the SEM. Scanning Electron Microscopy IV: 273-286
[3] Wright SI (1992) Individual Lattice Orientation Measurements Development and Applications of a Fully Automatic Technique. Ph.D. Thesis., Yale University.
[4] Krieger Lassen NC (1994) Automated Determination of Crystal Orientations from Electron Backscattering Patterns. Ph.D. Thesis, Danmarks Tekniske Universitet.
[5] Wright S, Nowell M (2008) High-Speed EBSD. Advanced Materials and Processes 66: 29-31
[6] Wright SI, Basinger JA, Nowell MM (2012) Angular precision of automated electron backscatter diffraction measurements. Materials Science Forum 702: 548-553
[7] Wright SI, Nowell MM, de Kloe R, Chan L (2014) Orientation Precision of Electron Backscatter Diffraction Measurements Near Grain Boundaries. Microscopy and Microanalysis 20:852-863
[8] Humphreys FJ, Huang Y, Brough I, Harris C (1999) Electron backscatter diffraction of grain and subgrain structures – resolution considerations. Journal of Microscopy – Oxford 195:212-216.
[9] Demirel MC, El-Dasher BS, Adams BL, Rollett AD (2000) Studies on the Accuracy of Electron Backscatter Diffraction Measurements. In: Schwartz AJ, Kumar M, Adams BL (eds) Electron Backscatter Diffraction in Materials Science. Kluwer Academic/Plenum Publishers, New York, pp 65-74.
[10] Godfrey A, Wu GL, Liu Q (2002) Characterisation of Orientation Noise during EBSP Investigation of Deformed Samples. In: Lee DN (ed) ICOTOM 13, Seoul, Korea, Textures of Materials. Trans Tech Publications Inc., pp 221-226.
[11] Ram F, Zaefferer S, Jäpel T, Raabe D (2015) Error analysis of the crystal orientations and disorientations obtained by the classical electron backscatter diffraction technique. Journal of Applied Crystallography 48: 797-813
[12] Wilkinson AJ, Britton TB (2012) Strains, planes, and EBSD in materials science. Materials Today 15: 366-376
[13] Ram F, Singh S, Wright SI, De Graef M (2017) Error Analysis of Crystal Orientations Obtained by the Dictionary Approach to EBSD Indexing. Ultramicroscopy 181:17-26.
[14] Nolze G, Jürgens M, Olbricht J, Winkelmann A (2018) Improving the precision of orientation measurements from technical materials via EBSD pattern matching. Acta Materialia 159:408-415
[15] Shi Q, Loisnard D, Dan C, Zhang F, Zhong H, Li H, Li Y, Chen Z, Wang H, Roux S (2021) Calibration of crystal orientation and pattern center of EBSD using integrated digital image correlation. Materials Characterization 178:111206
[16] Lenthe W, Singh S, De Graef M (2019) A spherical harmonic transform approach to the indexing of electron backscattered diffraction patterns. Ultramicroscopy 207:112841
[17] Hielscher R, Bartel F, Britton TB (2019) Gazing at crystal balls: Electron backscatter diffraction pattern analysis and cross-correlation on the sphere. Ultramicroscopy 207:112836
[18] Sparks G, Shade PA, Uchic MD, Niezgoda SR, Mills MJ, Obstalecki M (2021) High-precision orientation mapping from spherical harmonic transform indexing of electron backscatter diffraction patterns. Ultramicroscopy 222:113187
[19] Singh S, Ram F, De Graef M (2017) Application of forward models to crystal orientation refinement. Journal of Applied Crystallography 50:1664-1676.
[20] Winkelmann A, Jablon BM, Tong V, Trager‐Cowan C, Mingard K (2020) Improving EBSD precision by orientation refinement with full pattern matching. Journal of Microscopy 277:79-92
[21] Pang EL, Larsen PM, Schuh CA (2020) Global optimization for accurate determination of EBSD pattern centers. Ultramicroscopy 209:112876
[22] Wright SI, Nowell MM, Lindeman SP, Camus PP, De Graef M, Jackson MA (2015) Introduction and comparison of new EBSD post-processing methodologies. Ultramicroscopy 159:81-94

Reaching Out

Dr. René de Kloe, Applications Scientist, EDAX

2022 was a year of changes. In the beginning, I set up a desk in the scanning electron microscope (SEM) lab where, without truly reaching out, I only needed to turn in my chair to switch from emails and virtual customers on my laptop to the live energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) system and real data on the microscope. As travel restrictions gradually eased worldwide, we were all able to start meeting “real” people again. After almost two years of being grounded, I finally met people face to face again, discussing their analysis needs, and answering questions do not compare to online meetings. We restarted in-person training courses, and I participated in many external courses, exhibitions, and conferences, reaching out to microscopists all over Europe.

And as always, I try to correlate real life with some nice application examples. And what is similar to reaching out to people in the microanalysis world? Reaching out to things! So, what came to mind are remote thermal sensors, which most of us will have at home in the kitchen: a thermostat in an oven and a wired thermometer that you can use to measure food temperatures. And I just happened to have a broken one that was ready to be cut up and analyzed.

Figure 1. a) A food thermometer and b) an oven thermostat sensor.

On the outside, these two sensors looked very similar; both were thin metal tubes connected to a control unit. Because of this similarity, I was also expecting more or less the same measuring method, like using a thermocouple in both thermometers. But to my surprise, that was not quite the case.

The long tube of the food thermometer was mostly empty. Right at the tip, I found this little sensor about 1 mm across connected to copper wires that led to the control unit. After mounting and careful sectioning, I could collect EDS maps showing that the sensor consisted of a central block of Mn-Co-Fe-oxide material sandwiched between silver electrodes soldered to the copper-plated Ni wires.

Note that in the image, you only see one of the wires, the other is still below the surface, and I did not want to polish it any deeper.

Figure 2. The temperature sensor taken out of the tube of the food thermometer.

Figure 3. A forward scatter SEM image of the polished cross-section showing the central MnCoFe-oxide material and one of the connecting wires.

This was no thermocouple.

Figure 4. The element distribution in the sensor.

Figure 5. The EDS spectrum of the central CoMnFe-oxide area.

Instead, the principle of this sensor is based on measuring the changing resistivity with temperature. The EBSD map of the central Co-Mn-De oxide area shows a coarse-grained structure without any preferred orientation to make the resistivity uniform in all directions.

Figure 6. An EBSD IPF on Image Quality map of the sensor in the food thermometer.

Figure 7. (001) pole figure of the MnCoFe oxide phase, showing a random orientation distribution.

And where the tube of the food thermometer was mostly empty, the tube of the oven thermostat sensor was completely empty. There were not even electrical connections. The sensor was simply a thin hollow metal tube that contained a gas that expands when heated. This expansion would move a small disk with a measurement gauge that was then correlated with a temperature readout. Although this sounded very simple, some clever engineering was needed to prevent the tube from pinching shut when bending and moving it during installation.

I cut and polished the tube, and an EBSD map of the entire cross-section is shown below.

Figure 8. a) EBSD IQ and b) IPF maps of a cross-section through the entire tube of the oven thermostat sensor.

The tube is constructed out of three layers of a Fe-Cr-Ni alloy with fine-grained multiphase chromium phosphide layers in between. This microstructure is what provides corrosion protection, and it also adds flexibility to the tube. And this, in turn, is crucial to prevent cracks from forming that would cause the leaking of the contained gas, which is critical in getting a good temperature reading.

The detailed map below shows a section of the phosphide layer. There are two chromium phosphide phases, and in between, there are dendritic Ni grains that link everything together.

Figure 9. EDS maps showing the composition of one of the phosphide layers.

Figure 10. EBSD IPF maps of the different phases. a) All phases on a PRIAS center image, b) CrP, c) Fe matrix, and d) Ni dendrites, Cr3P.

When you look at the microstructure of both sensors in detail, it is possible to determine how they work, and you can appreciate why they have been designed as they are. The two devices are efficient and tailored to their intended use. The oven thermostat is designed to be mounted in a fixed position to be secure so that it can be used for a very long time. The food thermometer is very flexible and can easily be moved around.

In that respect, I feel there is another similarity between these sensors and the different kinds of meetings between people we have experienced over the past year. It does not matter how you do it; you can always reach out and feel some warmth.

I wish everybody a very happy and peaceful 2023.

APEX, now with WDS!

Dr. Shangshang Mu, Applications Engineer, Gatan/EDAX

The new APEX™ 3.0 is the ultimate materials characterization software, integrating Energy Dispersive Spectroscopy (EDS), Electron Backscatter Diffraction (EBSD), and Wavelength Dispersive Spectrometry (WDS) to deliver previously unattainable solutions. This optimized configuration offers the uncompromised performance of each technique and allows users to combine them for the ultimate materials insight. All three techniques seamlessly operate within the APEX, blending powerful elemental and crystallographic analysis routines through an intuitive interface to deliver outstanding data collection, faster analysis, and flexible reporting for users of all levels.

What does APEX WDS look like?

WDS functionalities are implemented seamlessly with the EDS graphical user interface. The user can quickly adapt to the new functionalities and employ WDS when and where EDS reaches the limit. With one-click from start to finish, Auto WDS allows fully automated WDS scan list generation, optimum sample height determination, and spectrum collection. It simultaneously collects EDS and WDS spectra and displays them side-by-side or overlaid for easy data visualization and interpretation (Figure 1), with no overlapping or overloading of windows.

Figure 1. Simultaneous EDS-WDS spectrum acquisition user interface.

APEX allows you to set an intermediate position for the EDS detector to ensure optimal count rates for both techniques.

Figure 2. Simultaneous EDS-WDS mapping user interface.

Sets of combined EDS-WDS spectrum, linescan, and mapping data at different stage positions can be done via automated batch collection routines (Figure 2) to streamline SEM experiments. EDS and WDS data collection settings are managed in one user-friendly batch scan list (Figure 3).

Figure 3. Combined EDS-WDS batch list.

The quantitative elemental analysis supports individual technique or combined EDS-WDS standards. You can easily switch between EDS and WDS standards for each element by clicking on the icon in front of the element (Figure 4).

Figure 4. Quantitative results with combined EDS-WDS standards.

With the addition of WDS capabilities, APEX 3.0 now includes EDS, EBSD, and WDS. Each characterization tool can operate independently to utilize EDAX’s technological advancements or integrates data to provide solutions that were once unachievable.

Stimulating Simulations

Dr. Stuart Wright, Senior Scientist, EDAX

It has been an interesting experience to build our OIM Matrix™ software package. As you may know, OIM Matrix is partially a front-end user interface to the EMsoft package developed by Professor Marc De Graef’s group at Carnegie Mellon University to make it convenient to use within the framework of OIM Analysis™. I have learned a lot in the process and am grateful for Marc’s patience with my many questions. Will Lenthe recently joined the EBSD group at EDAX. Will worked as a Post-Doc in Marc’s group, and his additional insights have been invaluable as we are striving to build the second generation of OIM Matrix. It will be easier to use, more robust, and provide some significant speed gains.

While our initial focus for OIM Matrix was on helping users improve the indexing of EBSD patterns from difficult-to-index materials, I’ve been surprised by how useful it has been for testing our software. It has also helped us in developing some of our new features. Having well-simulated patterns for known orientations and EBSD/SEM geometries is very helpful.

I used OIM Matrix for a study on feldspars. According to Wikipedia:

“Feldspars are a group of rock-forming aluminum tectosilicate minerals containing sodium, calcium, potassium, or barium. The most common members of the feldspar group are the plagioclase (sodium-calcium) feldspars and the alkali (potassium-sodium) feldspars. Feldspars make up about 60% of the Earth’s crust and 41% of the Earth’s continental crust by weight.”

Given that feldspars are relatively common, we are frequently asked to help index them. They are difficult, as a poster at the 2019 Quantitative Microanalysis (QMA) conference detailed [1]. I thought it might be interesting to see what we could learn about the limits of EBSD in characterizing these materials. I won’t give you all that we learned in that little study, but what I thought was an interesting snapshot. Figure 1 shows a phase diagram for the feldspar group of minerals.

Figure 1. Phase diagram for the feldspar group.

To start, I looked in the American Mineralogist Crystal Structure Database (AMCSD) for all the relevant entries I could find. There are a lot of variants. Here is a table:

Table 1. Number of entries in AMCSD for each feldspar.

I enjoy seeing pattern simulation results, but producing 149 master patterns [2] would take more patience than I have (each master pattern calculation can take several hours for these low-symmetry materials). So, I selected one entry for each mineral type. I tried to find one that seemed most representative of all the other entries in the set. After calculating the eight master patterns, I simulated one individual pattern at the same orientation for each mineral, as shown in Figure 2. Note that they are all similar, with the most deviation coming from the anorthite and sanidine end members of the series.

Figure 2. Patterns were simulated at Euler angles of (30°, 30°, 30°) for each feldspar.

To quantify the differences, I calculated the normalized dot-products [3] for all pattern pairs to get the following table. A value of “1” indicates the patterns are identical. As expected by the initial observation, the biggest difference is the sanidine to albite pair of patterns.

Table 2. Normalized dot products.

Of course, the next step would be to see how this holds up to experimental patterns and dictionary indexing [4]. I hope to eventually do this with samples Professor Rudy Wenk of Stanford University kindly gave me. Rudy has been one of the major contributors to the entries in the AMCSD for feldspars.

There was one more virtual experiment I thought would be interesting. I wanted to ascertain how much the chemical species in the feldspar series influenced the patterns. To do this, I created an average structure instead of using the lattice parameters for each feldspar. I then populated these structures with atoms to maintain the chemical composition ratios specified for each series. A master pattern for each ideal structure was calculated. Three hundred forty patterns were simulated uniformly, covering orientation space with a spacing of approximately 30° between orientations. The average normalized dot products were calculated for each pattern against the albite pattern at the same orientation. Figure 3 shows the results.

Figure 3. The normalized dot product of simulated patterns for idealized structures against the albite simulated patterns.

Clearly, the dot products are all very near 1, indicating that the differences in the simulated patterns due to chemical composition are small for these chemical species. This suggests that coupling EBSD with EDS is critical when trying to differentiate the different feldspar minerals. While this small study has not changed the world of feldspar indexing, it has, at least, been a stimulating study of simulating for me.

[1] B Schneider, and J Fournelle (2019) “Using Quantitative and Qualitative Analysis to Confirm Phase Identities for Large Area EBSD Mapping of Geological Thin Sections” Poster at Microanalysis Society Topical Conference: Quantitative Microanalysis, University of Minnesota, Minneapolis MN, June 2019.

[2] PG Callahan, and M De Graef (2013) “Dynamical electron backscatter diffraction patterns. Part I: Pattern simulations” Microscopy and Microanalysis, 19, 1255-1265.

[3] S Singh, and M De Graef (2016) “Orientation sampling for dictionary-based diffraction pattern indexing methods” Modelling and Simulation in Materials Science and Engineering, 24, 085013.

[4] K Marquardt, M De Graef, S Singh, H Marquardt, A Rosenthal, and S Koizuimi (2019) “Quantitative electron backscatter diffraction (EBSD) data analyses using the dictionary indexing (DI) approach: Overcoming indexing difficulties on geological materials” American Mineralogist: Journal of Earth and Planetary Materials, 102, 1843-1855.

Setting the Standard for EBSD

Matt Nowell, EBSD Product Manager, EDAX

Back in my early days of installing some of the first EBSD systems in the world, one of the issues I had was figuring out how to demonstrate the system’s performance and how to help users operate their systems to get that same performance. As EBSD users know, this technique requires a certain level of sample preparation to obtain useable patterns and good quality maps. Because of this, I would bring my own previously prepared samples to set up a system. However, I generally would not leave these behind. This encouraged customers to figure out sample preparation before using their EBSD system.

After a few of these visits, we decided it would be beneficial to provide users with standard samples that could be left with the systems. To do this, we selected the material, prepared it for EBSD, and then packaged it for delivery. The question at that point was, ” what material do we use?”

We wanted something that would produce good EBSD patterns, not significantly degrade over time, and was something we could prepare ourselves. One of the materials EBSD had consistent success with early on, and still do today, is nickel-based superalloys. These materials have a higher average atomic number than aluminum alloys for stronger EBSD pattern intensity, large enough grains for work on both tungsten and FEG source SEMs, and can sit in a lab for years while still producing good EBSD patterns after the initial preparation. This led us to select Inconel 600 as our standard material.

It also led to it being one of the most well-characterized alloys by EBSD globally, even if the results are not all published. We have used our nickel standard to test all our detectors, from early SIT video cameras, to the first DigiView CCD cameras, the high-speed Velocity CMOS cameras, and now the Clarity Super direct-detector system. This material gives us a consistent reference point to better understand performance. We have also used the material for validating PRIAS™ imaging, NPAR™ processing, and OIM Matrix™ indexing.

Figure 1. An EBSD IQ map with random grain boundaries drawn as black lines, primary twins drawn as red lines, and secondary twins drawn as blue lines.

Several interesting microstructural features can be measured with these alloys. First, a high fraction of twin boundaries are typically present within the nickel samples. Figure 1 shows an EBSD Image Quality (IQ) map with random grain boundaries drawn as black lines, primary twins drawn as red lines, and secondary twins drawn as blue lines. We can also show grain maps with this high twin fraction, where grains are determined from the measured orientations and then randomly colored while including and excluding the twins in the grain grouping algorithm. Figure 2a shows the grain map, including the twin boundaries, while Figure 2b shows the grain map excluding the twin boundaries. There is a significant difference in effective grain size between these two microstructure views. Finally, we know that the twinning plane in face-centered cubic nickel alloys is the (111) plane. We can display the (111) plane trace on both sides of the twin boundaries, as shown in Figure 3.

Figure 2. a) A grain map that includes the twin boundaries. b) A grain map excluding the twin boundaries.

Figure 3. Combined IQ and IPF orientation map with (111) plane traces shown on both sides of selected twin boundaries.

Now you have some idea of what you can measure with your EDAX EBSD nickel standard.

Intersections

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

The city has recently started burying a pipe down the middle of one of the roads into my neighborhood. There were already a couple of troublesome intersections on this road. The construction has led to several accidents in the past couple of weeks at these intersections and I am sure there are more to come.

A question from a reviewer on a paper I am co-authoring got me thinking about the impact of intersections of bands in EBSD patterns on the Hough transform. The intersections are termed ‘zone axes’ or ‘poles’ and a pattern is typically composed of some strong ones where several high intensity bands intersect as well as weak ones where perhaps only two bands intersect.

To get an idea of the impact of the intersections on the Hough transform, I have created an idealized pattern. The intensity of the bands in the idealized pattern is derived from the peaks heights from the Hough transform applied to an experimental pattern. For a little fun, I have created a second pattern by blacking out the bands in the original idealized pattern, leaving behind only the intersections. I created a third pattern by blacking out the intersections and leaving behind only the bands. I have input these three patterns into the Hough transform. As I expected, you can see the strong sinusoidal curves from the pattern with only the intersections. However, you can also see peaks, where these sinusoidal curves intersect and these correspond (for the most part) to the bands in the pattern.

In the figure, the middle row of images are the raw Hough Transforms and the bottom row of images are the Hough Transforms after applying the butterfly mask. It is interesting to note how much the Hough peaks differ between the three patterns. It is clear that the intersections contribute positively to finding some of the weaker bands. This is a function not only of the band intensity but also the number of zone axes along the length of the band in the pattern.

Eventually the construction on my local road will be done and hopefully we will have fewer accidents. But clearly, intersections are more than just a necessary evil 😊

Hats Off/On to Dictionary Indexing

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

Recently I gave a webinar on dynamic pattern simulation. The use of a dynamic diffraction model [1, 2] allows EBSD patterns to be simulated quite well. One topic I introduced in that presentation was that of dictionary indexing [3]. You may have seen presentations on this indexing approach at some of the microscopy and/or materials science conferences. In this approach, patterns are simulated for a set of orientations covering all of orientation space. Then, an experimental pattern is tested against all of the simulated patterns to find the one that provides the best match with the experimental pattern. This approach does particularly well for noisy patterns.

I’ve been working on implementing some of these ideas into OIM Analysis™ to make dictionary indexing more streamlined for datasets collected using EDAX data collection software – i.e. OIM DC or TEAM™. It has been a learning experience and there is still more to learn.

As I dug into dictionary indexing, I recalled our first efforts to automate EBSD indexing. Our first attempt was a template matching approach [4]. The first step in this approach was to use a “Mexican Hat” filter. This was done to emphasize the zone axes in the patterns. This processed pattern was then compared against a dictionary of “simulated” patterns. The simulated patterns were simple – a white pixel (or set of pixels) for the major zone axes in the pattern and everything else was colored black. In this procedure the orientation sampling for the dictionary was done in Euler space.
It seemed natural to go this route at the time, because we were using David Dingley’s manual on-line indexing software which focused on the zone axes. In David’s software, an operator clicked on a zone axis and identified the <uvw> associated with the zone axis. Two zone axes needed to be identified and then the user had to choose between a set of possible solutions. (Note – it was a long time ago and I think I remember the process correctly. The EBSD system was installed on an SEM located in the botany department at BYU. Our time slot for using the instrument was between 2:00-4:00am so my memory is understandably fuzzy!)

One interesting thing of note in those early dictionary indexing experiments was that the maximum step size in the sampling grid of Euler space that would result in successful indexing was found to be 2.5°, quite similar to the maximum target misorientation for modern dictionary indexing. Of course, this crude sampling approach may have led to the lack of robustness in this early attempt at dictionary indexing. The paper proposed that the technique could be improved by weighting the zone axes by the sum of the structure factors of the bands intersecting at the zone axes.
However, we never followed up on this idea as we abandoned the template matching approach and moved to the Burn’s algorithm coupled with the triplet voting scheme [5] which produced more reliable results. Using this approach, we were able to get our first set of fully automated scans. We presented the results at an MS&T symposium (Microscale Texture of Materials Symposium, Cincinnati, Ohio, October 1991) where Niels Krieger-Lassen also presented his work on band detection using the Hough transform [6]. After the conference, we hurried back to the lab to try out Niels’ approach for the band detection part of the indexing process [7].
Modern dictionary indexing applies an adaptive histogram filter to the experimental patterns (at left in the figure below) and the dictionary patterns (at right) prior to performing the normalized inner dot-product used to compare patterns. The filtered patterns are nearly binary and seeing these triggered my memory of our early dictionary work as they reminded me of the nearly binary “Sombrero” filtered patterns– Olé!
We may not have come back full circle but progress clearly goes in steps and some bear an uncanny resemblance to previous ones. I doff my hat to the great work that has gone into the development of dynamic pattern simulation and its applications.

[1] A. Winkelmann, C. Trager-Cowan, F. Sweeney, A. P. Day, P. Parbrook (2007) “Many-Beam Dynamical Simulation of Electron Backscatter Diffraction Patterns” Ultramicroscopy 107: 414-421.
[2] P. G. Callahan, M. De Graef (2013) “Dynamical Electron Backscatter Diffraction Patterns. Part I: Pattern Simulations” Microscopy and Microanalysis 19: 1255-1265.
[3] S.I. Wright, B. L. Adams, J.-Z. Zhao (1991). “Automated determination of lattice orientation from electron backscattered Kikuchi diffraction patterns” Textures and Microstructures 13: 2-3.
[4] Y.H. Chen, S. U. Park, D. Wei, G. Newstadt, M.A. Jackson, J.P. Simmons, M. De Graef, A.O. Hero (2015) “A dictionary approach to electron backscatter diffraction indexing” Microscopy and Microanalysis 21: 739-752.
[5] S.I. Wright, B. L. Adams (1992) “Automatic-analysis of electron backscatter diffraction patterns” Metallurgical Transactions A 23: 759-767.
[6] N.C. Krieger Lassen, D. Juul Jensen, K. Conradsen (1992) “Image processing procedures for analysis of electron back scattering patterns” Scanning Microscopy 6: 115-121.
[7] K. Kunze, S. I. Wright, B. L. Adams, D. J. Dingley (1993) “Advances in Automatic EBSP Single Orientation Measurements.” Textures and Microstructures 20: 41-54.

A Cog’s Case for Corporate Utopia

David Durham, Regional Sales Manager, EDAX

Not too long ago I went to my optometrist to get an eye exam for some replacement glasses. My last pair had been stolen after my car was broken into in broad daylight during lunch at a restaurant in the Bay Area. (What the thief planned on doing with my prescription glasses is still a mystery to me.)

Figure 1: The old phoropter* (top) and the new phoropter** (bottom).

It had been at least a couple years since my last examination, but I was prepared to be guided through all the typical tests, culminating with that “giant-machine-with-multiple-lenses” pressed into my face to help the optometrist determine the prescription that would best correct the errors in my vision. I’d later learn that this machine is called a phoro-optometer, or more commonly a “phoropter.” And, contrary to my previous experiences with this instrument, it was now a super-sleek, slimmed down, digital version of the machine, using a computer controlled digital refraction system to cycle through the refraction options instead of using stacks of physical lenses that had to be manually cycled by the optometrist.

It was much smaller, quieter, faster, and easier than the version with which I was familiar. I was thoroughly impressed. But I was even more impressed when the instrument was pulled away and I saw the Ametek logo emblazoned on the side of it.

I couldn’t help but reflexively blurt out “Hey I work there!” to which the optometrist looked up from my file and began curiously interrogating me about my history in the eye care industry. Sadly, he quickly lost interest after I explained that I worked in a different division of Ametek that manufactures EDS, EBSD, and WDS systems.

After my exam, for some reason I felt a bit intimidated about not knowing more about Ametek’s business units outside of the EDAX niche to which I belong. I knew Ametek was a huge corporation, steadily growing larger over the decades — mainly by acquisition of smaller companies – but I’d never really grasped the sheer size and breadth of everything Ametek does. This wasn’t the first time I’ve been in this type of situation. Prior to joining EDAX/Ametek I worked for another scientific instrumentation corporation, slightly smaller than Ametek but still a similar type of behemoth with a wide range of companies making products that service comparable industries and applications. Even at that corporation my knowledge of the business outside of my business unit’s portfolio was very limited. These places are just so big!

Working at large corporations like these can, at times, be a little bit discouraging if you think of yourself as just a single cog in a machine with thousands of moving parts. Giant corporations certainly seem to have a bad reputation these days and I’ll admit I’ve experienced my fair share of corporation-induced angst over the years. Working within a large bureaucracy can make completing the smallest internal tasks overwhelming. Being in a smaller company that is acquired – I’ve been through two acquisitions — can be disruptive to business and cause a lot of anxiety.

But is there a good side to these mega-corporations? I think so.

I can find some important benefits that could be argued to outweigh the negative aspects, not just to the cogs like myself but also to the markets that they serve. Whether or not these apply to other more prominent mega-corporations is debatable, but I think they seem to be reasonable positive characteristics, at least from my experience in the scientific instrumentation field.

Having the brand name recognition has always been an advantage. Customers (and their procurement departments) are typically more willing to do business with companies that have a long history of manufacturing products. Being in business for multiple decades with a proven track record of having the resources to reliably deliver products to the market and consistently service its user-base generates heaps of reassurance for customers that a younger or smaller company just can’t provide. It works similarly for vendors as well – it turns out that people are always more willing to sell you stuff if they’re confident that your company will pay for it.

Being in a large corporation also offers a huge advantage in the ability to research and develop new technology and product improvements. This can come by brute force – having deeper pockets to invest more money into R&D – or even by utilizing the synergy between individual companies under the corporation’s umbrella. EDAX is a great example of this in a couple ways. Ametek’s purchase of a new business unit in 2014 facilitated the development of EDAX’s groundbreaking Octane Elite and Octane Elect EDS systems, allowing for speed and sensitivity that had never been achieved before in any other EDS system. Collaboration between EDAX and another sister company within the Materials Analysis Division of Ametek, ushered in the release of EDAX’s new Velocity™ highspeed CMOS EBSD camera, by far the fastest EBSD system available. Realization of these two milestones of innovation would have been significantly delayed without the help of Ametek’s resources.

Figure 2: The Octane Elite (left) and the Velocity™ Super (right), two of EDAX’s products that were developed, in part, with the help of other business units inside Ametek.

But what I think tends to be the best part is that, as long as a company is meeting its targets and things are humming along nicely, corporations – at least the good ones, in my opinion — are usually happy to just let the business unit do its own thing. Having an “if it ain’t broke don’t fix it” mentality is the ideal way to keep the key talent happy and keep the business growing and making money. It also makes it possible to retain some semblance of the original company culture that contributed to its success in the first place. This is the holy grail for us cogs – being able to keep that small business feel while also being able to take advantage of all the big business benefits at the same time. Again, EDAX is a good example of this, with many of EDAX’s employees being legacy staff hired on long before the EDAX acquisition. This tells me Ametek must be doing something right.

So, I guess it’s debatable. While we may be willingly marching our grandchildren into a dystopia where three or four companies own all the businesses in the world, there are some undeniable advantages that working for a big company brings as well. And I take some comfort in the fact there are some very intelligent and innovative people behind the curtains, trying to do good things to make their customers happy and generally improve the lives of everyone in the world. We may or may not see all the things like the better phoropters out there, but our lives are almost certainly benefited by them whether we realize it or not.

* Photo from https://en.wikipedia.org/wiki/Phoropter
** Photo from http://www.reichert.com/

Saying What You Mean and Meaning What You Say!

Shawn Wallace, Applications Engineer, EDAX

A recent conversation on a list serv discussed sloppiness in the use of words and how it can cause confusion. This made me consider that in the world of microanalysis, we are not immune. We are probably sloppiest with two particular words. They are resolution and phase.

Let us start with how we use the word phase and how phases are commonly defined in microanalysis. In Energy Dispersive Spectroscopy (EDS), we use phase for everything, for example, phase mapping, phase library. In Electron Backscatter Diffraction (EBSD), the usage is a little more straightforward.

So, what is a phase? Well to me, a geologist, a phase has both a distinct chemistry and a distinct crystal structure. Why does this matter to a geologist? Two different minerals with the same chemistry, but with different structures, can behave in very different ways and this gives me useful information about each of them.
The classic example for geologists is the Al2SIO5 system (figure 1). It has three members, Kyanite, Sillimanite, and Andalusite. They each have the same chemistry but different structures. The structure of each is controlled by the pressure and temperature at which the mineral equilibrated. Simple chemistry tells me nothing. I need the structure to tease out that information.

Figure 1. Phase Diagram of the Al2SiO5 system in geological conditions. Different minerals form at different pressures and temperatures, letting geologists know how deep and/or the temperature at which the parent rock formed.**

EDS users use the term phase much more loosely. A phase is something that is chemically distinct. Our phase maps look at a spectrum pixel by pixel and see how they compare. In the end, the software goes through the entire map and groups each pixel with like pixels. The phase library does chi squared fits to compare the spectrum to the library (figure 2).

Figure 2. Our Spectrum Library Match uses as Chi-squared fit to determine the best possible matches. This phase is based on compositional data, not compositional and structural data.

While the definition of phase is relatively straight forward, the meaning of resolution gets a little murkier. If you asked someone what the EDS resolution is, you may get different answers depending on who you ask. The main way we use the term resolution when talking about EDS is spectral resolution. This defines how tight the peaks in a spectrum are (figure 3).

Figure 3. Comparison of EDS vs. WDS spectral resolution. WDS has much higher resolution (tighter peaks) than EDS, but fewer counts and more set-up are required.

The other main use of resolution, in EDS is the spatial resolution of the EDS signal itself (figure 4). There are many factors which determine this, but the main ones are the accelerating voltage and sample characteristics. This resolution can go from nanometers to microns.

Figure 4. Distribution of the electron energy deposited in an aluminum sample (top row) and a gold sample (bottom row) at 15 kV (left column) and 5 kV (right column). Note the dramatic difference in penetration given by the right hand side scale bar.

The final use of resolution for EDS is mapping resolution. This is by far the easiest to understand. It is just the step size of the beam while you are mapping.

Luckily for us, the easiest way to find out what people mean when they use the terms resolution or phase, is just to ask. Of course, the way to avoid any confusion is to be as precise as possible with your choice of words. I resolve to do my part and communicate as clearly as I can!

** Source: Wikipedia

From Collecting EBSD at 20 Patterns per second (pps) to Collecting at 4,500 pps

John Haritos, Regional Sales Manager Southwest USA. EDAX

I recently had the opportunity to host a demo for one of my customers at our Draper, Utah office. This was a long-time EDAX and EBSD user, who was interested in seeing our new Velocity CMOS camera, and to try it on some of their samples.

When I started in this industry back in the late 90s, the cameras were running at a “blazing” 20 points per second and we all thought that this was fast. At that time, collection speed wasn’t the primary issue. What EBSD brought to the table was automated orientation analysis of diffraction patterns. Now users could measure orientations and create beautiful orientation maps with the push of a button, which was a lot easier than manually interpreting these patterns.

Fast forward to 2019 and with the CMOS technology being adapted from other industries to EBSD we are now collecting at 4,500 pps. What took hours and even days to collect at 20 pps now takes a matter of minutes or seconds. Below is a Nickel Superalloy sample collected at 4,500 pps on our Velocity™ Super EBSD camera. This scan shows the grain and twinning structure and was collected in just a few minutes.

Figure 1: Nickel Superalloy

Of course, now that we have improved from 20 pps to 4,500 pps, it’s significantly easier to get a lot more data. So the question becomes, how do we analyze all this data? This is where OIM Analysis v8™ comes to the rescue for the analysis and post processing of these large data sets. OIM Analysis v8™ was designed to take advantage of 64 bit computing and multi-threading so the software can handle large datasets. Below is a grain size map and a grain size distribution chart from an Aluminum friction stir weld sample with over 7 Million points collected with the Velocity™ and processed using OIM Analysis v8™. This example is interesting because the grains on the left side of the image are much larger than the grains on the right side. With the fast collection speeds, a small (250nm) step size could still be used over this larger collection area. This allows for accurate characterization of grain size across this weld interface, and the bimodal grain size distribution is clearly resolved. With a slower camera, it may be impractical to analyze this area in a single scan.

Figure 2: Aluminum Friction Stir Weld

In the past, most customers would setup an overnight EBSD run. You could see the thoughts running through their mind: will my sample drift, will my filament pop, what will the data look like when I come back to work in the morning? Inevitably, the sample would drift, or the filament would pop and this would mean the dreaded “ugh” in the morning. With the Velocity™ and the fast collection speeds, you no longer need to worry about this. You can collect maps in a few minutes and avoid this issue in practice. It’s a hard thing to say in a brochure, but its easy to appreciate when seeing it firsthand.

For me, watching my customer see the analysis of many samples in a single day was impressive. These were not particularly easy samples. They were solar cell and battery materials, with a variety of phases and crystal structures. But under similar conditions to their traditional EBSD work, we could collect better quality data much faster. The future is now. Everyone is excited with what the CMOS technology can offer in the way of productivity and throughput for their EBSD work.