microanalysis

Back to Basics

Dr. René de Kloe, Applications Specialist, EDAX

When you have been working with EBSD for many years it is easy to forget how little you knew when you started. EBSD patterns appear like magic on your screen, indexing and orientation determination are automatic, and you can produce colourful images or maps with a click of a mouse.

Image 1: IPF on PRIAS™ center EBSD map of cold-pressed iron powder sample.

All the tools to get you there are hidden in the EBSD software package that you are working with and as a user you don’t need to know exactly how all of it happens. It just works. To me, although it is my daily work, it is still amazing how easy it sometimes is to get high quality data from almost any sample even if it only produces barely recognisable patterns.

Image 2: Successful indexing of extremely noisy patterns using automatic band detection.

That capability did not just appear overnight. There is a combination of a lot of hard work, clever ideas, and more than 25 years of experience behind it that we sometimes just forget to talk about, or perhaps even worse, expect everybody to know already. And so it is that I occasionally get asked a question at a meeting or an exhibition where I think, really? For example, some years ago I got a very good question about the EBSD calibration.

Image 3: EBSD calibration is based on the point in the pattern that is not distorted by the projection. This is the point where the electrons reach the screen perpendicularly (pattern center).

As you probably suspect EBSD calibration is not some kind of magic that ensures that you can index your patterns. It is a precise geometrical correction that distorts the displayed EBSD solution so that it fits the detected pattern. I always compare it with a video-projector. That is also a point projection onto a screen at a small angle, just like the EBSD detection geometry. And when you do that there is a distortion where the sides of the image on the screen are not parallel anymore but move away from each other. On video projectors there is a smart trick to fix that: a button labelled keystone correction which pulls the sides of the image nicely parallel again where they belong.

Image 4: Trapezoid distortion before (left) and after (right) correction.

Unfortunately, we cannot tell the electrons in the SEM to move over a little bit in order to make the EBSD pattern look correct. Instead we need to distort the indexing solution just so that it matches the EBSD pattern. And now the question I got asked was, do you actually adjust this calibration when moving the beam position on the sample during a scan? Because otherwise you cannot collect large EBSD maps. Apparently not everybody was doing that at that time, and it was being presented at a conference as the invention of the century that no EBSD system could do without. It was finally possible to collect EBSD data at low magnification! So, when do you think this feature will be available in your software? I stood quiet for a moment before answering, well, eh, we actually already have such a feature that we call the pattern centre shift. And it had been in the system since the first mapping experiments in the early 90’s. We just did not talk about it as it seemed so obvious.

There are more things like that hidden in the software that are at least as important, such as smart routines to detect the bands even in extremely noisy patterns, EBSD pattern background processing, 64-bit multithreading for fast processing of large datasets, and efficient quaternion-based mathematical methods for post-processing. These tools are quietly working in the background to deliver the results that the user needs.
There are some other original ideas that date back to the 1990’s that we actually do regularly talk about, such as the hexagonal scanning grid, triplet voting indexing, and the confidence index, but there is also some confusion about these. Why do we do it that way?

The common way in imaging and imaging sensors (e.g. CCD or CMOS chips) is to organise pixels on a square grid. That is easy and you can treat your data as being written in a regular table with fixed intervals. However, pixel-to-pixel distances are different horizontally and diagonally which is a drawback when you are routinely calculating average values around points. In a hexagonal grid the point-to-point distance is constant between all neighbouring pixels. Perhaps even more importantly, a hexagonal grid offers ~15% more points on the same area than a square grid, which makes it ideally suited to fill a surface.

Image 5: Scanning results for square (left) and hexagonal (right) grids using the same step size. The grain shape and small grains with few points are more clearly defined in the hexagonal scan.

This potentially allows improvements in imaging resolution and sometimes I feel a little surprised that a hexagonal imaging mode is not yet available on SEMs.
The triplet voting indexing method also has some hidden benefits. What we do there is that a crystal orientation is calculated for each group of three bands that is detected in an EBSD pattern. For example, when you set the software to find 8 bands, you can define up to 56 different band triangles, each with a unique orientation solution.

Image 6: Indexing example based on a single set of three bands – triplet.

Image 7: Equation indicating the maximum number of triplets for a given number of bands.

This means that when a pattern is indexed, we don’t just find a single orientation, we find 56 very similar orientations that can all be averaged to produce the final indexing solution. This averaging effectively removes small errors in the band detection and allows excellent orientation precision, even in very noisy EBSD patterns. The large number of individual solutions for each pattern has another advantage. It does not hurt too much if some of the bands are wrongly detected from pattern noise or when a pattern is collected directly at a grain boundary and contains bands from two different grains. In most cases the bands coming from one of the grains will dominate the solutions and produce a valid orientation measurement.

The next original parameter from the 1990’s is the confidence index which follows out of the triplet voting indexing method. Why is this parameter such a big deal that it is even patented?
When an EBSD pattern is indexed several parameters are recorded in the EBSD scan file, the orientation, the image quality (which is a measure for the contrast of the bands), and a fit angle. This angle indicates the angular difference between the bands that have been detected by the software and the calculated orientation solution. The fit angle can be seen as an error bar for the indexing solution. If the angle is small, the calculated orientation fits very closely with the detected bands and the solution can be considered to be good. However, there is a caveat. What now if there are different orientation solutions that would produce virtually identical patterns? This may happen for a single phase where it is called pseudosymmetry. The patterns are then so similar that the system cannot detect the difference. Alternatively, you can also have multiple phases in your sample that produce very similar patterns. In such cases we would typically use EDS information and ChI-scan to discriminate the phases.

Image 8: Definition of the confidence index parameter. V1 = number of votes for best solution, V2 = mumber of votes for 2nd best solution, VMAX= Maximum possible number of votes.

Image 9: EBSD pattern of silver indexed with the silver structure (left) and copper structure (right). Fit is 0.24″, the only difference is a minor variation in the band width matching.

In both these examples the fit value would be excellent for the selected solution. And in both cases the solution has a high probability of being wrong. And that is where the confidence index or CI value becomes important. The CI value is based on the number of band triangles or triplets that match each possible solution. If there are two indistinguishable solutions, these will both have the same number of triangles and the CI will be 0. This means that there are two or more apparently valid solutions that may all have a good fit angle. The system just does not know which of these solutions is the correct one and thus the measurement is rejected. If there is a difference of only 10% in matched triangles between alternative orientation solutions in most cases the software is capable of identifying the correct solution. The fit angle on its own cannot identify this problem.

After 25 years these tools and parameters are still indispensable and at the basis of every EBSD dataset that is collected with an EDAX system. You don’t have to talk about them. They are there for you.

“Strained” Friendship

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

Don’t just read the title of this post and skip to the photos or you might think it is some soap opera drama about strained relations – instead, the title is, once again, my feeble attempt at a punny joke!

I was recently doing a little reference checking and ended up on the website for Microscopy and Microanalysis (the journal, not the conference). On my first glance, I was surprised to see my name in the bottom right corner. Looking closer, I noticed that the paper Matt Nowell, David Field and I wrote way back in 2011 entitled “A Review of Strain Analysis Using Electron Backscatter Diffraction” is apparently the most cited article in Microscopy and Microanalysis. I am pleased that so many readers have found it useful. I remember, at the time, that we were getting a lot of questions about the tools within OIM Analysis™ for characterizing local misorientation and how they relate to strain. It was also a time when HREBSD was really starting to gain some momentum and we were getting a lot of questions on that front as well. So, we thought it would be helpful to write a paper that hopefully would answer some practical questions on using EBSD to characterize strain. From all the citations, it looks as though we actually managed to achieve what we had strived for.

My co-authors on that paper have been great to work with professionally; but I also count them among my closest personal friends. David Field joined Professor Brent Adams’ research group at BYU way back in 1987 if my memory is correct. We both completed master’s degrees at BYU and then followed Brent to Yale in 1988 to do our PhDs together. David then went on to Alcoa and I went to Los Alamos National Lab. Brent convinced David to leave and join the new startup company TSL and I joined about a year later. David left TSL for Washington State University shortly after EDAX purchased TSL.

Before, I joined TSL, Matt Nowell* had joined the company and he has been at TSL/EDAX ever since. Even with all the comings and goings we’ve remained colleagues and friends.

I’ve been richly blessed by both their excellent professional talents and their fun spirited friendship. We’ve worked, traveled and attended conferences together. We’ve played basketball, volleyball and golf together. I must also brag that we formed the core of the soccer team to take on the Seoul National University students after ICOTOM 13 in Seoul. Those who attended ICOTOM 13 may remember that it was held shortly after the 2002 World Cup hosted jointly by Korea and Japan; in which Korea had such a good showing – finishing 4th. A sequel was played at SNU where the students pretty much trounced the rest of the world despite our best efforts 😊. Here are a few snapshots of us with our Korean colleagues at ICOTOM 13 – clearly, we were always snappy dressers!

* Don’t miss Matt’s upcoming webinar: “Applications of High-Speed CMOS Cameras for EBSD Microstructural Analysis”

A Lot of Excitement in the Air!

Sia Afshari, Global Marketing Manager, EDAX

After all these years I still get excited about new technologies and their resulting products, especially when I have had the good fortune to play a part in their development. As I look forward to 2019, there are new and exciting products on the horizon from EDAX, where the engineering teams have been hard at work innovating and enhancing capabilities across all product lines. We are on the verge of having one of our most productive years for product introduction with new technologies expanding our portfolio in electron microscopy and micro-XRF applications.

Our APEX™ software platform will have a new release early this year with substantial feature enhancements for EDS, to be followed by EBSD capabilities later in 2019. APEX™ will also expand its wings to uXRF providing a new GUI and advanced quant functions for bulk and multi-layer analysis.

Our OIM Analysis™ EBSD software will also see a major update with the addition of a new Dictionary Indexing option.

A new addition to our TEM line will be a 160 mm² detector in a 17.5 mm diameter module that provides an exceptional solid angle for the most demanding applications in this field.

Elite T EDS System

Velocity™, EDAX’s low noise CMOS EBSD camera, provides astonishing EBSD performance at greater than 3000 fps with high indexing on a range of materials including deformed samples.

Velocity™ EBSD Camera

Last but not least, being an old x-ray guy, I can’t help being so impressed with the amazing EBSD patterns we are collecting from a ground-breaking direct electron detection (DED) camera with such “Clarity™” and detail, promising a new frontier for EBSD applications!
It will be an exciting year at EDAX and with that, I would like to wish you all a great, prosperous year!

EM Microanalysis Business in China

Harris Jiang, Regional Sales Manager, EDAX China

The FY2018 is coming to the end within one month. The Chinese EM market has increased dramatically in the past 10 years. According to the data that Prof. Zhang Ze (the CAS academician, Chairman of Asian EM association) provided at the 2018 Chinese EM meeting in October in Chengdu, Tsinghua University purchased the first unit of Cs-TEM in 2008. However, the total volume of this product has grown enormously since that time. As to the EM microanalysis (EDS-EBSD-WDS) market, the whole market capacity has expanded dramatically. Figure 1 clearly shows the number of TEMs and SEMs in China. ¹

Figure 1. Number of electron microscopes in China. Data is up to 2016.

With the increase in China’s economy, the Chinese market is becoming a crucial one with the largest potential for EM companies. Each single segment market deserves full attention and investment. The development of advanced materials and advanced industrial manufacturing relies on smart design and precise engineering. Microstructural control is key, and comprehensive facilities and expertise in electron microscopy are needed for this. NSFC has provided financial support for hundreds of projects in universities and research institutes in recent years. ² It needs to be pointed out that the term “industry market” does not necessarily imply low-end market and “academic market” does not mean high-end market either. For example, the electronic/ semiconductor industry will be a good segment market which we should focus on in the future. The Chinese Government has invested a huge amount of resources in it [3] – and this is a high-end one. They are asking vendors to offer the best high-level EDS to detect nanostructure of less than 10 nm. For most customers, we need to develop a complete workflow and application solution in the niche market rather than just the most advanced products, and this helps us to grow together.

EBSD in China is currently becoming a hot topic and key segment product, especially since 2016. It is promising that EBSD applications in China have increased greatly and continue to grow. Most researchers are trying to add EBSD on their SEMs. As a sales manager, I have plenty of opportunity to visit customers who are from various different backgrounds. Although their application needs are customized, the demand for EBSD is still growing. High-end EBSD customers need an EBSD detector with high speed and high sensitivity. EDAX is able to offer different EBSD solutions tailored to a variety of applications and requirements. We are taking a long-term vision and expecting a tremendous change in the next ten years. We need to think bigger and more!

At EDAX we will be improving our product offerings in the coming years by developing specific application solutions and products for better cooperation with leading customers in each market segment. Secondly, we will also promote the capability of the service and application teams by developing a comprehensive training system and strengthening our human resources in China. Lastly, we are enhancing team collaboration and improving efficiency by clarifying the responsibilities of positions and optimizing internal communication.

For the Chinese market, EDAX provides specific EDS and EBSD products to both entry-level and high-end customers in each niche market. We believe that in the coming months and years we will be able to provide more solutions for customers’ fundamental research and technology development. We are hoping that we will have a bright future with the Chinese market.

References:
1. Ze Zhang, Xiaodong Han, Nature Materials volume 15, pages 695–697 (2016)
2. China Nature Science Foundation supports projects in 2017 [in Chinese] http://www.nsfc.gov.cn/publish/portal0/tab434/info70085.htm
3. China shatters annual fab construction investment record at US$7 Billion in 2018. http://www.semi.org/en/highlights-august-2018-edition-fab-databases

Welcome to Weiterstadt!

Dr. Michaela Schleifer, European Regional Manager, EDAX

The European team had a very exhausting but successful week last week. Some months ago, we discussed the possibility of holding a user meeting at our headquarters in Weiterstadt, Germany. During our stay in Wiesbaden it became a tradition to do at least one user meeting or workshop a year. Because of our move to Weiterstadt and the development of some new structure in the European organization, it took quite some time to plan another user meeting. In spring time, we discussed how to satisfy the different areas in Europe regarding language and also how to transfer information about new technology to our distributors. We finally decided that we should organize 3 different meetings during the week of October 15th. The first two days were for our German speaking customers in Europe, mid-week we invited our distributors and on the last two days we offered a user meeting for our English-speaking customers. There was a lot of organization to be done, like making hotel reservations, preparing presentations, organizing hosting and also booking nice restaurants for the evening events. All of us were a bit nervous about whether everything would work, whether we had forgotten anything important and whether our SEM and system would work properly. The week before the meetings we installed the Velocity™ camera, our new high speed EBSD system in our demo lab and our application people were very happy with the performance and had fun playing around with it.

On Monday October 15th we started our first user meeting in the Weiterstadt office at around 1 pm with customers from the German speaking area. Around 45 participants joined the meeting. At the beginning we gave an overview of our current products and explained that our complete SDD series is using the Amptek modules with Si3N4 windows. Based on some spectra we showed the improved light element performance. After that Felix, one of our application specialists, showed our new user interface APEX™ live and the discussion which arose showed the interest from our users. Although only some users are doing EDS on a TEM we explained a little bit about the differences between EDS on a TEM and on a SEM. We finished the first day with a question and answer session and invited all the participants to a nice location in Darmstadt to have a typical German dinner together.

The next day was completely dominated by EBSD. Our EBSD product manager Matt Nowell, who came from Draper, USA to support us during our meetings, demonstrated the performance of our new Velocity™ EBSD camera. Matt also explained the differences in the camera technology using CCD or CMOS chips and described direct electron detection. It was easy to get more than 3000 indexed points per second while measuring a duplex steel with the Velocity™ camera. Our EBSD application specialist René de Kloe presented a lot of tips and tricks regarding EBSD measurements and analysis of measurement too and did not get tired of answering all the questions. At the end of our program all participants left with a good feeling having learnt a lot and got some good ideas about how to improve their measurements or what they might try to measure on their own samples.

The next day we shortened our program for our distributors and explained our product range and gave live demonstrations of APEX™ software platform and the Velocity™ CMOS EBSD camera. This day was dominated by a lot of discussions with the group and also by questions about our roadmap for 2019.

On Thursday and Friday of this week we did the same program for our English-speaking customers in Europe as we did for the German speaking customers. We had around 15 participants.

During this week we had around 75 customers in our office in Weiterstadt. Each customer was different in his applications and how he uses our systems but what we could observe during the evening was that most of them are very similar in what they like for dinner:

Late on Friday evening the whole European team was very happy that we managed the week with all the meetings and that based on the feedback we got it was a successful week. You may be sure that all of us went home and had a relaxing weekend!

I would like to thank Matt, Rene, Felix, Ana, Arie, Rudolf, Andreas and Paul and especially our customers who gave some interesting presentations about their institutes and the work they are doing there.

Endless Summer

Matt Nowell, EBSD Product Manager, EDAX

My family and I love the beach. We love to swim in the water, ride the waves, and play in the sand. Each summer we typically spend time at Sunset Beach, North Carolina. After years of seeing the cool stuff in the SEM, materials science and microscopy are always topics of discussion. This year, after enjoying the musical Hamilton, my wife was inspired to start working on a periodic table of elements rap song. My 13-year-old learned more about metalworking watching the History Channel show, Forged in Fire, where participants are challenged to make different weapons from assorted metallic sources. My favorite part was watching them evaluate different parts of a bicycle for heat-treatable steel to recycle. One of my favorite moments though was unpacking my beach shoes on the first day.

Generally, when we visit a beach, we try to bring home a shell or a piece of driftwood. However, when I was putting on my shoes for the first time, I noticed some sand was still present. My last beach trip had been to the Cayman Islands. I immediately noticed that this sand looked much different than the sand at Sunset Beach. I decided to save a little bit of each for some microscopy and microanalysis when I got back home.

When I looked at them both more closely, I saw that the sand from Sunset Beach (SB) on the left was much darker with black flecks, while the sand from Grand Cayman (GC) was much lighter. Thinking about the possible composition of the sand got me thinking about the bladesmithing competition held at the TMS annual meetings. One year, the team from UC Berkeley created a sword using magnetite found at local beaches using magnets. I thought it would be interesting to examine both of these sands with my SEM, EDS, and EBSD tools.

Sand grains from Sunset Beach
Sand grains from Sunset Beach.
Sand grains from Grand Cayman
Sand grains from Grand Cayman.

 

Initially I placed a bit of sand on an aluminum stub for SEM and EDS analysis. To reduce charging effects, I used the Low Vacuum capability of our FEI Teneo FEG-SEM, running at 0.1 mbar pressure. Images were collected using the Annular BackScatter (ABS) detector for atomic number contrast imaging. The sand grains from Sunset Beach were generally a little smaller than the Grand Cayman sand, as expected from visual inspection. Both sands exhibited cracking and weathering, which isn’t surprising in hindsight either. Many grains show flat surfaces, with internal structure visible with ABS imaging contrast.

I followed the imaging work with compositional analysis using EDS. The Sunset Beach sand was primarily composed of silicon and oxygen grains, which I suspect is quartz. The single brighter grain in Figure 3 was composed of an iron-titanium oxide. The Grand Cayman sand was primarily a calcium carbonate (Ca-C-O) material. The more needle shaped grains were primarily sodium and chlorine, which I assume is then salt that has solidified during the evaporation of the water. All this leads me to believe I really didn’t do a good job of cleaning my shoes after Grand Cayman.

While quartz being present in sand wasn’t surprising to me, the observation of calcium carbonate did remind me of some geological homework I did on the island. The water in Grand Cayman was very clear, which made it great for snorkeling. We swam around and saw a coral reef, a sunken ship, lots of fish, and stingrays. To understand why the water was so clear, I read that it was the lack of topsoil, and the erosion and runoff of topsail to the water that was responsible for the clarity. Looking again at this reference, it mentions that the top layer of the island is primarily composed of carbonates. The erosion of this material would explain the primary composition of the beach sand in my shoes.

Of course, the next step now is analyzing these sands with EBSD to determine the crystal structure of the materials. I’ve started the process. I’ve mounted some of the sand in epoxy, and hand polished to get some flat surfaces for analysis. I’m able to get EBSD patterns, but getting a good background is going to be tricky. I think the next step will be to watch my colleague Shawn Wallace’s webinar on Optimizing Backgrounds on MultiPhase samples to be presented on September 27th. You can also register for this here.

In the meantime, I’ll keep the sand samples on my desk to remind me of summer as the colder Utah winters will be approaching. It will be a good reason to stay inside and write the next chapter of this analysis for another blog post.

One, Two, Three Times an Intern

Kylie Simpson, Summer Intern at EDAX

Kylie ‘at home’ in the Applications Lab.

This summer was my third working for the EDAX Applications Team. It has been an amazing opportunity to be directly involved with research, customer support, and software testing here in Mahwah. I was able to continue with the APEX™ software testing that I worked on last summer which I found incredibly interesting because I’ve been able to observe the software evolve to best meet customer needs and improve in overall performance. I also had the chance to attend the Microscopy and Microanalysis (M&M) show in Baltimore, MD. This was an incredible experience for an undergraduate student, like me, interested in Materials Science and Microscopy. I was able to connect with people in the field, attend talks on topics at the forefront of Microscopy research, and present a poster that I have been helping out with this summer here at EDAX.

The majority of my time this year has been focused on helping Dr. Jens Rafaelsen, the head of the Mahwah Applications Team, with the data collection and analysis for a paper on the effects of Variable Pressure on EDS. Although Variable Pressure is an incredibly useful tool for studying SEM samples that are susceptible to charging, the introduction of gas to the specimen chamber has implications that must be considered when collecting EDS spectra. Additional gas particles in the SEM chamber lead to a scattering of the electron beam, known as beam spread or beam skirting.

In order to study and quantify this phenomenon, we used a double insulated Faraday cup with a 10 µm aperture, pictured below, to measure the unscattered beam at different pressures and working distances. We also modeled this beam scattering using Monte Carlo simulations that consider the SEM geometry as well as the type of gas in the chamber, which vary based on the type of SEM. Based on our experimental and theoretical results, we determined that as much as 85% of the electron beam is scattered outside of the 10 µm diameter high pressures of 130 Pa. This is much more scattering than we had anticipated, based on previous papers on this subject, making these results incredibly important for anyone using variable pressure in the SEM.

Double insulated Faraday cup with a 10 µm aperture.


Unscattered Beam Percentage vs. Pressure: Theoretical

Unscattered Beam Percentage vs. Pressure: Experimental

Overall, I am very thankful for the opportunities that EDAX has given me this summer and in the past. As a member of the Applications Team, I was able to work alongside the Engineering, Software Development, Customer Support, and Sales teams in order to help provide customers with the best analysis tools for their needs. I also gained a deeper understanding of the research, data collection, and analysis processes for writing a paper to be published: a truly incredible experience for an undergraduate student. Above all, the plethora of knowledge and experience of those here at EDAX and their willingness to share this information with me and others has been the most valuable aspect of my time here.