microstructural analysis

Endless Summer

Matt Nowell, EBSD Product Manager, EDAX

My family and I love the beach. We love to swim in the water, ride the waves, and play in the sand. Each summer we typically spend time at Sunset Beach, North Carolina. After years of seeing the cool stuff in the SEM, materials science and microscopy are always topics of discussion. This year, after enjoying the musical Hamilton, my wife was inspired to start working on a periodic table of elements rap song. My 13-year-old learned more about metalworking watching the History Channel show, Forged in Fire, where participants are challenged to make different weapons from assorted metallic sources. My favorite part was watching them evaluate different parts of a bicycle for heat-treatable steel to recycle. One of my favorite moments though was unpacking my beach shoes on the first day.

Generally, when we visit a beach, we try to bring home a shell or a piece of driftwood. However, when I was putting on my shoes for the first time, I noticed some sand was still present. My last beach trip had been to the Cayman Islands. I immediately noticed that this sand looked much different than the sand at Sunset Beach. I decided to save a little bit of each for some microscopy and microanalysis when I got back home.

When I looked at them both more closely, I saw that the sand from Sunset Beach (SB) on the left was much darker with black flecks, while the sand from Grand Cayman (GC) was much lighter. Thinking about the possible composition of the sand got me thinking about the bladesmithing competition held at the TMS annual meetings. One year, the team from UC Berkeley created a sword using magnetite found at local beaches using magnets. I thought it would be interesting to examine both of these sands with my SEM, EDS, and EBSD tools.

Sand grains from Sunset Beach
Sand grains from Sunset Beach.
Sand grains from Grand Cayman
Sand grains from Grand Cayman.

 

Initially I placed a bit of sand on an aluminum stub for SEM and EDS analysis. To reduce charging effects, I used the Low Vacuum capability of our FEI Teneo FEG-SEM, running at 0.1 mbar pressure. Images were collected using the Annual BackScatter (ABS) detector for atomic number contrast imaging. The sand grains from Sunset Beach were generally a little smaller than the Grand Cayman sand, as expected from visual inspection. Both sands exhibited cracking and weathering, which isn’t surprising in hindsight either. Many grains show flat surfaces, with internal structure visible with ABS imaging contrast.

I followed the imaging work with compositional analysis using EDS. The Sunset Beach sand was primarily composed of silicon and oxygen grains, which I suspect is quartz. The single brighter grain in Figure 3 was composed of an iron-titanium oxide. The Grand Cayman sand was primarily a calcium carbonate (Ca-C-O) material. The more needle shaped grains were primarily sodium and chlorine, which I assume is then salt that has solidified during the evaporation of the water. All this leads me to believe I really didn’t do a good job of cleaning my shoes after Grand Cayman.

While quartz being present in sand wasn’t surprising to me, the observation of calcium carbonate did remind me of some geological homework I did on the island. The water in Grand Cayman was very clear, which made it great for snorkeling. We swam around and saw a coral reef, a sunken ship, lots of fish, and stingrays. To understand why the water was so clear, I read that it was the lack of topsoil, and the erosion and runoff of topsail to the water that was responsible for the clarity. Looking again at this reference, it mentions that the top layer of the island is primarily composed of carbonates. The erosion of this material would explain the primary composition of the beach sand in my shoes.

Of course, the next step now is analyzing these sands with EBSD to determine the crystal structure of the materials. I’ve started the process. I’ve mounted some of the sand in epoxy, and hand polished to get some flat surfaces for analysis. I’m able to get EBSD patterns, but getting a good background is going to be tricky. I think the next step will be to watch my colleague Shawn Wallace’s webinar on Optimizing Backgrounds on MultiPhase samples to be presented on September 27th. You can also register for this here.

In the meantime, I’ll keep the sand samples on my desk to remind me of summer as the colder Utah winters will be approaching. It will be a good reason to stay inside and write the next chapter of this analysis for another blog post.

One, Two, Three Times an Intern

Kylie Simpson, Summer Intern at EDAX

Kylie ‘at home’ in the Applications Lab.

This summer was my third working for the EDAX Applications Team. It has been an amazing opportunity to be directly involved with research, customer support, and software testing here in Mahwah. I was able to continue with the APEX™ software testing that I worked on last summer which I found incredibly interesting because I’ve been able to observe the software evolve to best meet customer needs and improve in overall performance. I also had the chance to attend the Microscopy and Microanalysis (M&M) show in Baltimore, MD. This was an incredible experience for an undergraduate student, like me, interested in Materials Science and Microscopy. I was able to connect with people in the field, attend talks on topics at the forefront of Microscopy research, and present a poster that I have been helping out with this summer here at EDAX.

The majority of my time this year has been focused on helping Dr. Jens Rafaelsen, the head of the Mahwah Applications Team, with the data collection and analysis for a paper on the effects of Variable Pressure on EDS. Although Variable Pressure is an incredibly useful tool for studying SEM samples that are susceptible to charging, the introduction of gas to the specimen chamber has implications that must be considered when collecting EDS spectra. Additional gas particles in the SEM chamber lead to a scattering of the electron beam, known as beam spread or beam skirting.

In order to study and quantify this phenomenon, we used a double insulated Faraday cup with a 10 µm aperture, pictured below, to measure the unscattered beam at different pressures and working distances. We also modeled this beam scattering using Monte Carlo simulations that consider the SEM geometry as well as the type of gas in the chamber, which vary based on the type of SEM. Based on our experimental and theoretical results, we determined that as much as 85% of the electron beam is scattered outside of the 10 µm diameter high pressures of 130 Pa. This is much more scattering than we had anticipated, based on previous papers on this subject, making these results incredibly important for anyone using variable pressure in the SEM.

Double insulated Faraday cup with a 10 µm aperture.


Unscattered Beam Percentage vs. Pressure: Theoretical

Unscattered Beam Percentage vs. Pressure: Experimental

Overall, I am very thankful for the opportunities that EDAX has given me this summer and in the past. As a member of the Applications Team, I was able to work alongside the Engineering, Software Development, Customer Support, and Sales teams in order to help provide customers with the best analysis tools for their needs. I also gained a deeper understanding of the research, data collection, and analysis processes for writing a paper to be published: a truly incredible experience for an undergraduate student. Above all, the plethora of knowledge and experience of those here at EDAX and their willingness to share this information with me and others has been the most valuable aspect of my time here.

Down Memory Lane

Sia Afshari, Global Marketing Manager, EDAX

For years I have been attending the Denver X-ray conference (DXC) and it is hard when it coincides with the Microscopy and Microanalysis Conference (M&M) as it has a few times in the past several years. It is just difficult for me to accept that the overlap is not avoidable!

My interests are twofold, marketing activities where my main responsibility lie, and technical sessions which still pique my curiosity and which are beneficial for future product development. In the past couple of years at M&M, it has been great to attend sessions devoted to the 50 year anniversaries of electron microscopy, technical evolution, and algorithms, where my colleagues have either been the subject of presentations or have given papers. I have had the fortune to meet and, in some cases, to reacquaint with some of the main contributors to the scientific advancement of electron microscopy.

Being at M&M, I have missed the final years of attendance at DXC of the “old-timers” who have retired. These are gentlemen, in the true meaning of the word, whom I have had the honor of knowing for over 30 years and who have been more than generous with their time with me. I recognize most of all their devotion and contribution in advancing x-ray analysis to where it is today. Their absence will be felt especially in the development of methodology and algorithm. As a friend, who was frustrated with the lack of availability of scientists with a deep knowledge in the field, recently put it, “these guys don’t grow on trees.”

Back at M&M this year, I listened to Frank Eggert talking about the “The P/B Method. About 50 Years a Hidden Champion”, and he brought back many memories. I recognized most of his referenced names, and the fact that they are no longer active in the industry! Looked around the room, I saw more people of the same hair color as mine (what is left). I thought about the XRF/XRD guys I used to know and who are also no longer around the industry. The old Pete Seeger song popped up in my mind with a new verse as; “where have all the algorithmic guys gone?”

Vacationing Between a Rock and a Hard Place?

Shawn Wallace, Applications Engineer, EDAX.

One of the perks of both my degree (Geology) and my current job is that I have travelled extensively. In all those travels, I had been to 47 of the 48 contiguous US States, with Maine being the missing one. This year, I decided to be selfish and dragged the family to Maine on vacation, so I that could tick off the final one.

Being a member of the Wallace family means vacation is a time for strenuous hikes and beating on rocks to unlock their inner goodies, to add to our ever growing rock and mineral collection. This vacation was no different. Maine is home to some of the best studied and known Pegmatites, and they quickly became our goal. Pegmatites are neat for a several reasons, the main two being that they tend to form giant crystals (a 19 foot long Beryl found in Maine) and weird minerals in general tend to form in them.

I was able to track down some publicly accessible sites, found a lovely home base to rent for the week, and we set off for a week long rockhounding adventure. Ok not all week. We took a couple days off to go swimming, as it got up over 90F (>32C).

Figure 1. Dendrites cover this massive feldspar sample on nearly all faces.

Our first stops yielded the usual kind of rocks I was expecting, but another site did not. There we found dendrites everywhere. The rock itself is a massive feldspar (Fig. 1). You can see that most of the dendrites nucleate at the edge of a fracture surface and then do their fractal thing on the surface itself. Wanting to better understand the sample, I started searching for previous EBSD work on geological dendrites. While a lot exists in the metals world, very little exists in the geological world. To me, this means I have work to do. Let’s see what I can do to get some useful data on this sample!

P.S. I have Alaska and Hawaii to go. Who needs an onsite training in those states? 😉

Countdown to M&M…..

Patrick Camus, PhD, Director of Engineering, EDAX

This time of year is, at least in the US, preparation time for the Microscopy and Microanalysis (M&M) meeting. Like most big shows, every attendee has a significant amount of preparation to perform in the weeks (days?) leading up to their travel date. Most readers of this blog will be platform or poster presenters. You may be under stress to collect that last set of experimental data to fill that last hole in the analysis to finalize your presentation.

Life is not so different for the commercial exhibitors like EDAX. Unknown to the general participants, there are many departments under similar pressures to ensure a productive meeting for all attendees. Engineering is applying the finishing touches to new products. Software Engineering is approving the latest versions of software for release. Marketing Communications is contacting current and prospective customers to attend equipment demos and workshops during the exhibition hours. Marketing is receiving the final graphics of product literature for decorating the booth. Service is scheduling engineers to install all the EDAX microanalysis systems in our booth and those of our electron microscope associates. Applications scientists are finalizing their presentations for the meeting but also for the demos and EDAX workshops to be performed in our booth. Logistics is coordinating the hotels for our employees and shipping our equipment both to and from the venue. About the only employees not under stress before the meeting are Sales who coast now but are under the most stress (or is it strain) during the week of the show.

The exhibitors may seem very relaxed to the visitors during the show, but that image derives from the total effort that they are putting forth now so that you have the best experience possible.

We look forward to seeing all of you in Baltimore, or your next show!

Click here for more information about EDAX at this year’s event.

Crown Caps = Fresh Beer?

Dr. Felix Reinauer, Applications Specialist Europe, EDAX

A few days ago, I visited the Schlossgrabenfest in Darmstadt, the biggest downtown music festival in Hessen and even one of the biggest in Germany. Over one hundred bands and 12 DJs played all kinds of different music like Pop, Rock, Independent or House on six stages. This year the weather was perfect on all four days and a lot of people, celebrated a party together with well known, famous and unknown artists. A really remarkable fact is the free entrance. The only official fee is the annual plastic cup, which must be purchased once and is then used for any beverage you can buy in the festival area.

During the festival my friend and I listened to the music and enjoyed the good food and drinks sold at different booths in the festival grounds. In this laid-back atmosphere we started discussing the taste of the different kinds of beer available at the festival and throughout Germany. Beer from one brewery always tastes the same but you can really tell the difference if you try beer from different breweries. In Germany, there are about 1500 breweries offering more than 5000 different types of beer. This means it would take 13.5 years if you intended to taste a different beer every single day. Generally, breweries and markets must guarantee that the taste of a beer is consistent and that it stays fresh for a certain time.

In the Middle Ages a lot of people brewed their own beer and got sick due to bad ingredients. In 1516 the history of German beer started with the “Reinheitsgebot”, a regulation about the purity of beer. It says that only three ingredients, malt, water, and hops, may be used to make beer. This regulation must still be applied in German breweries. At first this sounds very unspectacular and boring, but over the years the process was refined to a great extent. Depending on the grade of barley roasting, the quantity of hops and the brewing temperature, a great variety of tastes can be achieved. In the early times the beer had to be drunk immediately or cooled in cold cellars with ice. To take beer with you some special container was invented to keep it drinkable for a few hours. Today beer is usually sold in recyclable glass bottles with a very tight cap keeping it fresh for months without cooling. This cap protects the beer from oxidation or getting sour.

Coming back to our visit to the Schlossgrabenfest; in the course of our discussions about the taste of different kind of beer we wondered how the breweries guarantee that the taste of the beer will not be influenced by storage and transport. The main problem is to seal the bottles gas-tight. We were wondered about the material the caps on the bottles are made of and whether they are as different as the breweries and maybe even special to a certain brewery.

I bought five bottles of beers from breweries located in the north, south, west, and east of Germany and one close to the EDAX office in Darmstadt. After opening the bottles, a cross section of the caps was investigated by EDS and EBSD. To do so, the caps were cut in the middle, embedded in a conductive resin and polished (thanks to René). The area of interest was the round area coming from the flat surface. The EDS maps were collected so that the outer side of the cap was always on the left side and the inner one on the right side of the image. The EBSD scans were made from the inner Fe metal sheet.

Let´s get back to our discussion about the differences between the caps from different breweries. The EDS spectra show that all of them are made from Fe with traces of Mn < 0.5 wt% and Cr, Ni at the detection limit. The first obvious difference is the number of pores. The cap from the east only contains a few, the cap from north the most and the cap from the middle big ones, which are also located on the surface of the metal sheet. The EBSD maps were collected from the centers of the caps and were indexed as ferrite. The grains of the cap from the middle are a little bit smaller and with a larger size distribution (10 to 100 microns) than the others, which are all about 100 microns. A remarkable misorientation is visible in some of the grains in the cap from the north.

Now let´s have a look at the differences on the inside and outside of the caps. EDS element maps show carbon and oxygen containing layers on both sides of all the caps, probably for polymer coatings. Underneath, the cap from the east is coated with thin layers of Cr with different thicknesses on each side. On the inside a silicone-based sealing compound and on the outside a varnish containing Ti can also be detected. The cap from the south has protective coatings of Sn on both sides and a silicon sealing layer can also be found on the inside. The composition of the cap from the west is similar to the cap from the east but with the Cr layer only on the outside. The large pores in the cap from the middle are an interesting difference. Within the Fe metal sheet, these pores are empty, but on both sides, they are filled with silicon-oxide. It seems that this silicon oxide filling is related to the production process, because the pores are covered with the Sn containing protective layers. The cap from the north only contains a Cr layer on the inside. The varnish contains Ti and S.

In summary, we didn’t expect the caps would have these significant differences. Obviously, the differences on the outside are probably due to the different varnishes used for the individual labels from each of the breweries. However, we didn’t think that the composition and microstructure of the caps themselves would differ significantly from each other. This study is far from being complete and cannot be used as a basis for reliable conclusions. However, we had a lot of fun before and during this investigation and are now sure that the glass bottles can be sealed to keep beer fresh and guarantee a great variety of tastes.

Building an EBSD Sample

Matt Nowell, EBSD Product Manager, EDAX

Father’s Day is this weekend, and I like to think my kids enjoy having a material scientist for a father. They have a go-to resource for math questions, science projects are full of fun and significant digits, and when they visit the office they get to look at bugs and Velcro with the SEM. I’m always up to take them to museums to see crystals and airplanes and other interesting things as we travel around. That’s one way we have tried to make learning interactive and engaging. Another activity we have recently tried is 3D printing. This has allowed us to find or create 3D digital models of things and then print them out at home. Here are some fun examples of our creations.
At home we are printing with plastics, but in the Material Science world there is a lot of interest and development in printing with metals as well. This 3D printing, or additive manufacturing, is rapidly developing as a new manufacturing approach for both prototyping and production in a range of industries including aerospace and medical implants. Instead of melting plastics with a heated nozzle, metal powders are melted together with lasers or electron beams to create these 3D shapes that cannot be easily fabricated by traditional approaches.

In these applications, it is important to have reliable and consistent properties and performance. To achieve this, the microstructure of the metals must be both characterized and understood. EBSD is an excellent tool for this requirement.

The microstructures that develop during 3D printing are very interesting. Here is an example from a Ni-based superalloy created using Selective Laser Melting (SLM). This image shows a combined Image Quality and Orientation (IQ + IPF) Map, with the orientations displayed relative to the sample normal direction. Rather than equiaxed grains with easily identifiable twin boundaries, as are common with many nickel superalloys, this image shows grains that are growing vertically in the structure. This helps indicate the direction of heat flow during the manufacturing process. Understanding the local conditions during melting and solidification helps determine the final grain structure.
In some materials, this heating and cooling will cause not only melting, but also phase transformations that also affect the microstructure. Ti-6Al-4V (or Ti64) is one of the most common Titanium alloys used in both aerospace and biomedical applications, and there has been a lot of work done developing additive manufacturing methods for this alloy. Here is an IQ + IPF map from a Ti64 alloy built for a medical implant device.
At high temperatures, this alloy transforms into a Body-Centered Cubic (or BCC) structure called the Beta phase. As the metal cools, it transforms into a Hexagonal Closed Pack (HCP) structure, called the Alpha phase. This HCP microstructure develops as packets of similarly oriented laths as seen above. However, not all the Beta phase transforms. Here is an IQ + Phase EBSD map, where the Alpha phase is red and the Beta phase is blue. Small grains of the Beta phase are retained from the higher temperature structure.
If we show the orientations of the Beta grains only, we see how the packets relate to the original Beta grains that were present at high temperatures.
The rate of cooling will also influence the final microstructure. In this example, pieces of Ti64 were heated and held above the Beta transition temperature. One sample was then cooled in air, and another was quenched in water. The resulting microstructures are shown below. The first is the air-cooled sample.
The second is the water-cooled sample.

Clearly there is a significant difference in the resulting structure based on the cooling rate alone. As I imagine the complex shapes built with additive manufacturing, understanding both the local heating and cooling conditions will be important for optimization of both the structure and the properties.