WDS

APEX, now with WDS!

Dr. Shangshang Mu, Applications Engineer, Gatan/EDAX

The new APEX™ 3.0 is the ultimate materials characterization software, integrating Energy Dispersive Spectroscopy (EDS), Electron Backscatter Diffraction (EBSD), and Wavelength Dispersive Spectrometry (WDS) to deliver previously unattainable solutions. This optimized configuration offers the uncompromised performance of each technique and allows users to combine them for the ultimate materials insight. All three techniques seamlessly operate within the APEX, blending powerful elemental and crystallographic analysis routines through an intuitive interface to deliver outstanding data collection, faster analysis, and flexible reporting for users of all levels.

What does APEX WDS look like?

WDS functionalities are implemented seamlessly with the EDS graphical user interface. The user can quickly adapt to the new functionalities and employ WDS when and where EDS reaches the limit. With one-click from start to finish, Auto WDS allows fully automated WDS scan list generation, optimum sample height determination, and spectrum collection. It simultaneously collects EDS and WDS spectra and displays them side-by-side or overlaid for easy data visualization and interpretation (Figure 1), with no overlapping or overloading of windows.

Figure 1. Simultaneous EDS-WDS spectrum acquisition user interface.

APEX allows you to set an intermediate position for the EDS detector to ensure optimal count rates for both techniques.

Figure 2. Simultaneous EDS-WDS mapping user interface.

Sets of combined EDS-WDS spectrum, linescan, and mapping data at different stage positions can be done via automated batch collection routines (Figure 2) to streamline SEM experiments. EDS and WDS data collection settings are managed in one user-friendly batch scan list (Figure 3).

Figure 3. Combined EDS-WDS batch list.

The quantitative elemental analysis supports individual technique or combined EDS-WDS standards. You can easily switch between EDS and WDS standards for each element by clicking on the icon in front of the element (Figure 4).

Figure 4. Quantitative results with combined EDS-WDS standards.

With the addition of WDS capabilities, APEX 3.0 now includes EDS, EBSD, and WDS. Each characterization tool can operate independently to utilize EDAX’s technological advancements or integrates data to provide solutions that were once unachievable.

Saying What You Mean and Meaning What You Say!

Shawn Wallace, Applications Engineer, EDAX

A recent conversation on a list serv discussed sloppiness in the use of words and how it can cause confusion. This made me consider that in the world of microanalysis, we are not immune. We are probably sloppiest with two particular words. They are resolution and phase.

Let us start with how we use the word phase and how phases are commonly defined in microanalysis. In Energy Dispersive Spectroscopy (EDS), we use phase for everything, for example, phase mapping, phase library. In Electron Backscatter Diffraction (EBSD), the usage is a little more straightforward.

So, what is a phase? Well to me, a geologist, a phase has both a distinct chemistry and a distinct crystal structure. Why does this matter to a geologist? Two different minerals with the same chemistry, but with different structures, can behave in very different ways and this gives me useful information about each of them.
The classic example for geologists is the Al2SIO5 system (figure 1). It has three members, Kyanite, Sillimanite, and Andalusite. They each have the same chemistry but different structures. The structure of each is controlled by the pressure and temperature at which the mineral equilibrated. Simple chemistry tells me nothing. I need the structure to tease out that information.

Figure 1. Phase Diagram of the Al2SiO5 system in geological conditions. Different minerals form at different pressures and temperatures, letting geologists know how deep and/or the temperature at which the parent rock formed.**

EDS users use the term phase much more loosely. A phase is something that is chemically distinct. Our phase maps look at a spectrum pixel by pixel and see how they compare. In the end, the software goes through the entire map and groups each pixel with like pixels. The phase library does chi squared fits to compare the spectrum to the library (figure 2).

Figure 2. Our Spectrum Library Match uses as Chi-squared fit to determine the best possible matches. This phase is based on compositional data, not compositional and structural data.

While the definition of phase is relatively straight forward, the meaning of resolution gets a little murkier. If you asked someone what the EDS resolution is, you may get different answers depending on who you ask. The main way we use the term resolution when talking about EDS is spectral resolution. This defines how tight the peaks in a spectrum are (figure 3).

Figure 3. Comparison of EDS vs. WDS spectral resolution. WDS has much higher resolution (tighter peaks) than EDS, but fewer counts and more set-up are required.

The other main use of resolution, in EDS is the spatial resolution of the EDS signal itself (figure 4). There are many factors which determine this, but the main ones are the accelerating voltage and sample characteristics. This resolution can go from nanometers to microns.

Figure 4. Distribution of the electron energy deposited in an aluminum sample (top row) and a gold sample (bottom row) at 15 kV (left column) and 5 kV (right column). Note the dramatic difference in penetration given by the right hand side scale bar.

The final use of resolution for EDS is mapping resolution. This is by far the easiest to understand. It is just the step size of the beam while you are mapping.

Luckily for us, the easiest way to find out what people mean when they use the terms resolution or phase, is just to ask. Of course, the way to avoid any confusion is to be as precise as possible with your choice of words. I resolve to do my part and communicate as clearly as I can!

** Source: Wikipedia