Learning From Customers

Matt Nowell, EBSD Product Manager, EDAX

As EBSD Product Manager, one of the things I have missed the most in the last 18 months during the COVID pandemic is visiting customers. Generally, in a year, I will attend a few meetings. Some are reoccurring: M&M for microscopy topics, TMS for materials science, and an annual EBSD meeting (either the RMS or MAS version, depending on the year) to keep up with the latest and greatest in these fields. Additionally, I will attend a new show to learn about potential markets and applications. It’s always enjoyable to meet both users and prospects to learn more about their applications and how EDAX tools can help their characterization needs.

In place of these shows, I’ve been turning towards social media to keep track of trends for EBSD. Twitter is one tool I use, where there is a strong scientific group that shares their thoughts on a range of subjects and offers support to each other in this networked community. Recently, my Twitter feed showed a beautiful EBSD map on the cover of Science. Professor Andrew Minor’s group out of UC Berkeley had used EDAX EBSD to analyze twinning in cryoforged titanium. I feel connected to this work, as I’ve looked at twinning in titanium on other samples (Bringing OIM Analysis Closer to Home blog). Seeing different posts about various applications helps me understand where EBSD is used is very exciting and rewarding.

Figure 1. September 17, 2021 issue of Science magazine featuring an EBSD orientation map of cryoforged titanium.

LinkedIn is another social media tool I use. One of my favorite things about this platform is seeing how the careers of different people I know have developed over the years. I turn 50 in a couple of weeks, and I’ve been involved in EBSD for over half of these years. With that experience, I’ve seen the generational development of scientists and engineers in my field. The post-docs who first adopted EBSD when I started are now department chairs and running their own research groups. The students who came to a training course now advise the new users at their companies on EBSD. Recent students are graduating and now asking about EBSD for their new positions. It’s easy to get a sense of how the EBSD knowledge I’ve shared with people has percolated out into the greater world.

While I expect to see some EBSD on Twitter and LinkedIn, this year, I also had a pleasant surprise finding some wonderful EBSD in Gizmodo (https://gizmodo.com/these-microscopic-maps-of-3d-printed-metals-look-like-a-1846669930). I’ve had a strong interest in additive manufacturing since visiting NASA 15 years ago. Seeing this technology develop and how EBSD can help understand the microstructures produced is very satisfying to me. I reached out to Jake Benzing, who was the driver behind this post. This led to his group at NIST being featured in our latest EDAX Insight newsletter. It also helped me connect with a user and be better positioned to get feedback on using our products to drive development and improvement.

Figure 2. Ti-6Al-4V created by a form of AM called electron-beam melting powder-bed fusion. This map of grain orientations reveals an anisotropic microstructure, with respect to the build direction (Z). In this case, the internal porosity was sealed by a standard hot isostatic pressing treatment.

Leave a Reply