My Turn

Dr. Stuart Wright, Senior Scientist, EDAX

One of the first scientific conferences I had the good fortune of attending was the Eighth International Conference on Textures of Materials (ICOTOM 8) held in 1987 in Santa Fe, New Mexico. I was an undergraduate student at the time and had recently joined Professor Brent Adams’ research group at Brigham Young University (BYU) in Provo, Utah. It was quite an introduction to texture analysis. Most of the talks went right over my head but the conference would affect the direction my educational and professional life would take.

Logos of the ICOTOMs I've attended

Logos of the ICOTOMs I’ve attended

Professor Adams’ research at the time was focused on orientation correlation functions. While his formulation of the equations used to describe these correlations was coming along nicely, the experimental side was quite challenging. One of my tasks for the research group was to explore using etch pits to measure orientations on a grain-by-grain basis. It was a daunting proposition for an inexperienced student. At the ICOTOM in Santa Fe, Brent happened to catch a talk by a Professor from the University of Bristol named David Dingley. David introduced the ICOTOM community to Electron Backscatter Diffraction (EBSD) in the SEM. Brent immediately saw this as a potential experimental solution to his vision for a statistical description of the spatial arrangement of grain orientations in polycrystalline microstructures.

At ICOTOMs through the years

At ICOTOMs through the years

After returning to BYU, Brent quickly went about preparing to get David to BYU to install the first EBSD system in North America. Instead of etch pits, my Master’s degree became comparing textures measured by EBSD and those measured with traditional X-Ray Pole Figures. I had the opportunity to make some of the first EBSD measurements with David’s system. From those early beginnings, Brent’s group moved to Yale University where we successfully built an automated EBSD system laying the groundwork for the commercial EBSD systems we use today.

I’ve had the good fortune to attend every ICOTOM since that one in Santa Fe over 30 years ago now. The ICOTOM community has helped germinate and incubate EBSD and continues to be a strong supporter of the technique. This is evident in the immediate rise in the number of texture studies undertaken using EBSD immediately after EBSD was introduced to the ICOTOM community.

The growth in EBSD in terms of the percentage of EBSD related papers at the ICOTOMs

The growth in EBSD in terms of the percentage of EBSD related papers at the ICOTOMs

Things have a way of coming full circle and now I am part of a group of three (with David Fullwood of BYU and my colleague Matt Nowell of EDAX) whose turn it is to host the next ICOTOM in St George Utah in November 2017. The ICOTOM meetings are held every three years and generally rotate between Europe, the Americas and Asia. At ICOTOM 18 we will be celebrating 25 years since our first papers were published using OIM.
It is a humbling opportunity to pay back the texture community, in just a small measure, for the impact my friends and colleagues within this community have had both on EBSD and on me personally. It is exciting to consider what new technologies and scientific advances will be germinated by the interaction of scientists and engineers in the ICOTOM environment. All EBSD users would benefit from attending ICOTOM and I invite you all to join us next year in Utah’s southwest red rock country for ICOTOM 18! (

Some of the spectacular scenery in southwest Utah (Zion National Park)

Some of the spectacular scenery in southwest Utah (Zion National Park)

With Great Data Comes Great Responsibility

Matt Nowell, EBSD Product Manager, EDAX

First, I have to acknowledge that I stole the title above from a tweet by Dr. Ben Britton (@BMatB), but I think it applies perfectly to the topic at hand. This blog post has been inspired by a few recent events around the lab. First, our data server drives suffered from multiple simultaneous hard drive failures. Nothing makes you appreciate your data more than no longer having access to it. Second, my colleague and friend Rene de Kloe wrote the preceding article in this blog, and if you haven’t had the opportunity to read it, I highly recommended it. Having been involved with EBSD sample analysis for over 20 years, I have drawers and drawers full of samples. Some of these are very clearly labeled. Some of these are not labeled, or the label has worn off, or the label has fallen off. One of these we believe is one of Rene’s missing samples, although both of us have spent time trying to find it. Some I can recognize just by looking, others need a sheet of paper with descriptions and details. Some are just sitting on my desk, either waiting for analysis or around for visual props during a talk. Here is a picture of some of these desk samples including a golf club with a sample extracted from the face, a piece of a Gibeon meteorite that has been shaped into a guitar pick, a wafer I fabricated myself in school, a rod of tin I can bend and work harden, and then hand to someone else to try, and a sample of a friction stir weld that I’ve used as a fine grained aluminum standard.

Each sample leads to data. With high speed cameras, it’s easier to collect more data in a shorter period of time. With simultaneous EDS collection, it’s more data still. With things like NPAR™, PRIAS™, HR-EBSD, and with OIM Analysis™ v8 reindexing functionality, there is also a driving force to save EBSD patterns for each scan. With 3D EBSD and in-situ heating and deformation experiments, there are multiple scans per sample. Over the years, we have archived data with Zip drives, CDs, DVDs, and portable hard drives. Fortunately, the cost for storage has dramatically decreased in the last 20+ years. I remember buying my first USB storage stick in 2003, with 256 MB of storage. Now I routinely carry around multiple TBs of data full of different examples for whatever questions might pop up.

How do we organize this plethora of data?
Personally, I sometimes struggle with this problem. My desk and office are often a messy conglomerate of different samples, golf training aids (they help me think), papers to read, brochures to edit, and other work to do. I’m often asked if I have an example of one material or another, so there is a strong driving force to be able to find this quickly. Previously I’ve used a database we wrote internally, which was nice but required all of us to enter accurate data into the database. I also used photo management software and the batch processor in OIM Analysis™ to create a visual database of microstructures, which I could quickly review and recognize examples. Often however, I ended up needing multiple pictures to express all the information I wanted in order to use this collection.


To help with this problem, the OIM Data Miner function was implemented into OIM Analysis™. This tool will index the data on any given hard drive, and provide a list of all the OIM scan files present. A screenshot using the Data Miner on one of my drives is shown above. The Data Miner is accessed through this icon on the OIM Analysis™ toolbar. I can see the scan name, where it is located, the date associated with the file, what phases were used, the number of points, the step size, the average confidence index, and the elements associated with any simultaneous EDS collection. From this tool, I can open a file of interest, or I can delete a file I no longer need. I can search by name, by phase, or by element, and I can display duplicate files. I have found this to be extremely useful in finding datasets, and wanted to write a little bit about it in case you may also have some use for this functionality.


Dr. René de Kloe, Applications Specialist EDS, EBSD, EDAX

The job of an applications engineer is to help people. Help sales people to explain to customers what a system can do. Help customers to get the most out of their system and help them to understand their materials better. Help the marketing group with nice examples. And help the development team to devise applications that have not been tried before.

One thing you need in order to be able to help is knowing the EDAX analysis systems inside-out. But the other thing you need is samples. Lots of samples. Every function or analysis tool in the software, regardless if it is for EDS, EBSD, WDS, or XRF is best shown with a specific material or combination of elements or phases. Some of these, like chemical standards with known composition, you have to make or perhaps buy. Others you have to collect yourselves, but from where? A great source for new materials are our customers. People often send me materials to evaluate our systems, or for help on how to best analyse their samples. When I then get permission to keep a bit of the material it goes directly into my collection, together with valuable information on the current analysis requirements in different scientific disciplines.

Eight phase FeSi alloy Brass with NiMnSi particles 

This goes a long way in getting good example materials, but I always keep my eyes open for new interesting things. When I see a metal strip in an anti-theft label in clothing I keep it (after buying the item of course), when a droplet of lead-tin solder falls on the floor, I stick it in the microscope to see if it looks good. I also scrutinize things that get thrown away, ranging from the lid of a vegetable jar to a damaged bellows of an EBSD system. That has given me beautiful cast aluminium samples for EDS mapping, multiphase brass alloys for ChI-Scan EDS-EBSD analysis, and recently an unexpected copper-plated zinc-aluminium-silicon alloy for EBSD phase identification from a broken belt buckle.

Grain structure of a staple Grain structure of a key ring 

Luckily I don’t always have to go dumpster diving to get my example materials. One of my favorite sample mounts contains different types of heavily deformed ferrite, duplex stainless steel, and also martensitic structures. That sounds perhaps complicated, but on the outside the same sample just looks like staples, a paperclip, a key ring, and a screw.

The screw, for example, I polished after doing some DIY work at home and because a certain type of screw kept breaking off when I tightened it, I wanted to take a close look why that happened. It turned out that there were lots of small cracks along the thread, which then also lined up with trails of carbides further inside the screw. That turned out to be a really bad combination and when you tighten the screw, the cracks propagate, connect with the carbide trails and the screw head snaps off. The replacement screws that I used instead had a much finer structure without any cracks and that is what is still holding things together in the house. This shows how microstructures literally shape our daily life. And it also provides a beautiful example to help illustrate the importance of microstructural characterization to new EBSD users.

Weak screw Strong screw

The huge variation in materials and microstructures makes the collection of demonstration samples the most important tool for an application scientist and from this place I hereby want to thank all people who have given me a piece of some material during my years at EDAX to use to help others.

By the way, I would appreciate it very much if the person who briefly “borrowed” my marble sample last year gives it back soon …

Don’t Beam Me Up Yet!

Sia Afshari, Global Marketing Manager, EDAX
This September is the 50th anniversary of the airing the Star Trek series and if you live around New York City, where this year’s convention is being held, you cannot help running into some of the characters walking around in the Star Fleet uniforms or some alien costumes.

The Star Trek series left its mark on the psyche of many especially those who grew up in that era. Many inventions from the Motorola flip phone, tablets, flat screens, hypospray, stun guns, universal translator, all the way to the concept of a retractor beam that is being used as an optical tweezer to trap and remove bacteria by a focused laser beam have been inspired or attributed to this series.

The most intriguing device in the series was the Tricorder concept. It performed medical, biological, geological, physical, and chemical analyses along with detecting spatial anomalies and alien life forms all in one handheld device!


Mr. Spock used his Tricorder to deliver results with an unquestionable degree of accuracy and confidence level that covered analytical capabilities of the following techniques in one package:
IR, entire photon spectrum detection, colorimetry, pressure sensor, humidity gauge, ultrasonic, particle analyses (e-, e+, n, p, ν, HP), XRF, XRD, ICP, AA, HPLC, medical X-rays, MRI, CAT-scan, PET-scan, Electron Microscopy, EDS, EBSD, Raman, to name a few.

And, Tricorder did them all apparently remotely, without any interaction with its subject matter that as we know is the fundamental rule of a measurement.

As has been reported in the media this week, some of the Tricorder functionalities have come to fruition. NASA’s handheld device called LOCAD, measures microorganisms such as E. coli, fungi and salmonella onboard the International Space Station. Two handheld medical devices are on their way to help doctors examine blood flow and check for cancer, diabetes or bacterial infection. Loughborough University in England announced a photo-plethysmography technology in a handheld device that can monitor the heart function and at Harvard Medical School a small device that utilizes a similar technology as MRI that can non-invasively inspect the body. China’s version of the Tricorder health monitor is reported to have cleared FDA approval for the US market!

Regardless of the validity of the Star Trek inspired inventions as being real or nostalgic, one cannot deny the everlasting impact that the series has had on the imaginations of those who saw the achievable possibilities through science and technology in the future. At least it allowed our imaginations to go wild for that one hour.


In insomniac moments, besides the whereabouts of the Orion planet one may wonder, is there a signature force for matter that has not been discovered yet that can be used for the design of a true Tricorder? Until that time, focusing on EDS miniaturization for the next generation portable electron microscope is on my mind with the hope that I will not be beamed up until the realization of the concept! You hear that Scotty?

Browsing for the Trekkies:
China’s Version Of A ‘Star Trek’ Tricorder Has Just Been Approved By The FDA

Metals, Minerals and Gunshot Residue

Dr. Jens Rafaelsen, Applications Engineer EDAX

During a recent visit to a customer facility I was asked what kind of samples, and applications I typically see. It would seem that this would be a pretty easy question to answer but I struggled to narrow it down to anything “typical”. Over the past three weeks I have spent a couple of days each week at customer facilities and I think a brief description of each of them will explain why I had a hard time answering the question.

The first facility I went to was a university in the process of qualifying an integrated EDS/EBSD system on a combined focused ion beam (FIB) and scanning electron microscope (SEM). A system like this allows one to remove material layer by layer and reconstruct a full 3D model of the sample. The dataset in Figure 1 illustrates why this information can be crucial when calculating material properties based on the grain structure from an EBSD scan. If one looks at the image on the left in the figure, it seems obvious that there are a few large grains in the sample with the area between them filled by smaller grains. However, the reconstructed grain on the right shows that several of these smaller “grains” seen in the single slice are actually interconnected and form a very large grain that stretches outside the probed volume.

Figure 1: Single slice EBSD map (left) and single reconstructed grain from 3D slice set (right).

Figure 1: Single slice EBSD map (left) and single reconstructed grain from 3D slice set (right).

While we spent a good amount of time documenting exactly what kind of speed, signal-to-noise, resolution and sensitivity we could get out of the system, one of the customer’s goals was to measure strain to use as a basis for material modelling. We also discussed a potential collaboration since our EBSD applications engineer, Shawn Wallace, has access to meteorite samples through his previous position at the American Museum of Natural History in New York and a 3D measurement of the grains in a meteorite could make a very compelling study.

Next up was a government agency where the user’s primary interest was in mineral samples but also slag and biological materials retained in mineral matrices. Besides the SEM with EDS they had a microprobe in the next room and they would often investigate the samples in the SEM first before going to the microprobe for detailed analysis (when and if this is required is a different discussion, I would recommend Dale Newbury and Nicholas Ritchie’s article for more details: J Mater Sci (2015) 50:493–518 DOI 10.1007/s10853-014-8685-2).

A typical workflow would be to map out an area of the sample and identify the different phases present to calculate the area fraction and total composition. Since the users of the facility work with minerals all the time, they could easily identify the different parts of the sample by looking at the spectra and quantification numbers, but I have a physics background and will readily admit that I would be hard pressed to tell the difference between bustamite and olivine without the help of Google or a reference book. However, this specific system had the spectrum matching option, which eliminates a lot of the digging in books and finding the right composition. The workflow is illustrated in Figure 2, where one starts by collecting a SEM image of the area of interest and, when the EDS map is subsequently collected, the software will automatically identify areas with similar composition and assign colors accordingly. The next step would then be to extract the spectrum from one area and match it up against a database of spectra. As we can see in the spectrum of Figure 2, the red phase of the EDS map corresponds to a obsidian matrix with slightly elevated Na, Al, and Ca contributions relative to the standard.
Figure 2a

Figure 2: Backscatter electron image (top left) and corresponding phase map (top right) showing different compositions in the sample. The bottom spectrum corresponds to the red phase and has an obsidian spectrum overlaid.

Figure 2: Backscatter electron image (top left) and corresponding phase map (top right) showing different compositions in the sample. The bottom spectrum corresponds to the red phase and has an obsidian spectrum overlaid.

The last facility I visited was a forensic lab, where they had purchased an EDS system primarily for gunshot residue (GSR) detection. The samples are usually standard 12.7 mm round aluminum stubs with carbon tabs. The sticky carbon tabs are used to collect a sample from the hands of a suspect, carbon coated and then loaded into the SEM. The challenge is now to locate particles that are consistent with gunshot residue amongst all the other stuff there might be on the sample. The criteria are that the particle has to contain antimony, barium and lead, at least for traditional gunpowder. Lead free gunpowder is available but it is significantly more expensive and when asking how often it is seen in the labs, I was told that apparently the criminal element is price conscious and not particularly environmentally friendly!

The big challenge with GSR is that the software has to search through the entire stub, separate carbon tape from particles down to less than 1 micron, and then investigate whether a particle is consistent with GSR based on the composition. The workflow is illustrated in Figure 3 and is done by collecting high resolution images, looking for particles based on greyscale value in the image, collecting a spectrum from each particle and then classifying the particle based on composition. Once the data is collected, the user can go in and review the total number of particles and specifically look for GSR particles, relocate them on the sample, and collect high resolution images and spectra for documentation in a potential trial.

Figure 3: Overview showing the fields collected from the full sample stub (top left), zoomed image corresponding to the red square in the overview image (top right) and gunshot residue particle from the red square in the zoomed image (bottom).

Figure 3: Overview showing the fields collected from the full sample stub (top left), zoomed image corresponding to the red square in the overview image (top right) and gunshot residue particle from the red square in the zoomed image (bottom).

Three weeks, three very different applications and a very long answer to the question of what kind of samples and applications I typically see. Each of these three applications is typical in its own way although they have little in common. This brings us to the bottom line: most of the samples and applications we come by might be based in the same technique but often the specifics are unique and I guess the uniqueness is really what is typical.

From Intern to Analyst – Studying the Impact of ‘Non-Ideal’ Samples on Quant Results

Kylie Simpson and Robert Rosenthal, 2016 Summer Interns at EDAX

Being surrounded by equipment worth more than your average college student can even fathom is incredibly daunting. Your heart still skips a beat at every hiss or beep that the microscope produces. Not to mention the fear of ramming into the pole piece while inserting the EDS detector (we later learned there was a hard stop to prevent this but it never quite seemed to alleviate the fear). It’s hard to summarize all of the experiences from our internship at EDAX this summer. While it was only about two and a half months, the sheer amount knowledge we gained through hands on experience is unquantifiable. The five day EDS training course in itself contained enough information to be taught over an entire college semester.

Working with the Applications team gave us a real feel for what EDAX is all about. Not only did we get to work on a summer-long project, we also got to work with the marketing, engineering, and software teams on a regular basis. We also helped with support for the new APEX software. This work setting provided us with a plethora of new knowledge, not only of the physics and programming behind EDAX software but also of the inner workings of the company and the crucial role that teamwork plays in accomplishing tasks. Having access to an electron microscope as well as the specialized knowledge of the members of the Applications team enabled us to get the most out of our summer here at EDAX. After sitting in on a meeting with other members of the Applications team, we were exposed to some of the real-world problems faced by customers on a regular basis and decided to investigate this further with our summer project.

When collecting quantification results for EDS, the ZAF matrix corrections are based on the assumption that the sample is flat, homogeneous, and infinitely thick to the electron beam. Although these are the ideal collection requirements, many customers run into problems when their samples do not meet these assumptions. We spent our time here testing the impact of ‘non-ideal’ samples on quant results while also determining ways for customers to improve the accuracy of quant results with these samples. We tested samples with rough topography by scratching up and polishing a stainless steel and a pyrite sample (Figure 1). By collecting a counts per second map for the steel (Figure 2), we were able to visualize the impact of rough samples and confirm the need for sample prep.

Figure 1. Pyrite particles and polished pyrite Figure 2. CPS maps of stainless steel surfaces

We also tested inhomogeneous samples, including a Lead-Tin solder sample and a stainless steel sample (pictured below). By collecting spectra of these samples at different magnifications, we observed the correlation between lower magnification and a higher accuracy of quant results.

Figure 3: Lead-Tin solder and stainless steel samples

Figure 3: Lead-Tin solder and stainless steel samples

Finally, we tested the impact of thin samples on quant results using an aluminum coated piece of silicon. This sample was very hard to obtain, being that we had to coat the silicon five separate times, but it yielded very interesting results (see graph (left) in Figure 4 below). Our results illustrated the influence and importance of collecting spectra while also allowing us to back-calculate the thickness of each aluminum layer (pictured in Figure 4 (right) below).

Figure 4.

Figure 4.

Overall, we thoroughly enjoyed our summer at EDAX and will take away not only knowledge of EDS, EBSD, SEMs, computer programming, and teamwork, but also valuable problem solving skills applicable to classes, professions, and other real-world scenarios that we will encounter in the future.

Meet the Interns

Kylie Simpson: Kylie is currently a student at the Thayer School of Engineering at Dartmouth. She is participating in a duel-degree program with Colby College and Dartmouth College and is studying mechanical engineering and physics.

Robert Rosenthal: Robbie is currently a student at the University of Colorado at Boulder. He in going into his junior year studying Mechanical Engineering.

Training classes and You

Shawn Wallace, Applications Engineer, EDAX

Over the last month or so, I have spent quite a bit of time training people on our systems. Between a workshop, the Lehigh Microscopy school, two webinars, and two in-house training courses, I have interacted with all levels of users. This had me thinking back to my experiences, years ago on the other side of the desk in the EDAX classroom and what I learned from the courses. With that in mind, I began thinking about what our customers/students can do to get the best out of our training sessions.
Lunch and Learn M&M 2016
The biggest thing they can do is to spend time familiarizing themselves with the general operation of their complete system: their SEM, our systems, and most importantly, with their samples.  Sit down, fiddle with things and just learn how different settings interact; Amp time and Deadtime for EDS, Camera settings for EBSD (see my ‘Camera Optimization’ webinar). The main thing this does is makes you start thinking about what these settings are doing and how they work with your samples. While you do this, you will start to formulate questions in your mind. For some of these questions you will be able to come to an answer. Some will be directly answered during the course. Others will click while you listen and make connections to your work and I will see that ‘Aha!’ moment on your face as you figure out, why that little trick worked or possibly failed miserably.  By spending the time to figure out things on your own, you are getting in the right mindset to come to our courses and ask questions.

This leads to the second biggest thing you can do: Ask me questions! That is why engaging with your system is so important. You are setting yourself up to ask pertinent questions about your samples and your systems. You are finding your natural work flow, but our job is to help you to optimize it, to help you to understand what you are doing, and most importantly help you to understand why you should do it that way. This is why running your system with your samples is a very important thing to do before you come to our courses.

Another reason for asking questions is that you need to be an active learner and engage with your instructor (aka me). Ever sat in a college class and had the teacher just talk and talk and talk for hours on a subject as you sip your coffee to try to keep yourself from dozing off? Ever taught a class and looked at the faces of people sipping their coffee as their heads do that little nod as they fail to stay awake? It’s not fun for either person. I always start my training courses by saying that I want questions. I want you to be engaged and thinking during the entirety of my courses. I want it to not be a lecture, but a conversation. I want that instant feedback to help me understand what concepts you are struggling with and what topics are clicking, so that I can dive deeper into subjects that I need to.
That’s it. That is all you need to do to come to our courses and get the most out of them. Be prepared and be engaged. You will absorb the information we are giving you and you will be able to take it home and put it to use to get better and faster results, while understanding what the system is doing at a much deeper level.

With all that said, there is one more important step. You should never stop learning. Luckily for you, the applications team here at EDAX is always creating new resources for our customers to use to learn with. Sometimes it is quick blog post about some neat new feature we have implemented, at other times it’s a webinar covering the most difficult aspects of microanalysis.

I hope to see you soon on the other side of a desk. Happy Learning in the meantime!

Click here for more information about upcoming EDAX training sessions.