EDAX China User Meeting in Guiyang 贵阳用户会流水帐

Dr. Sophie Yan, Applications Engineer China, EDAX

EDAX China User Meeting, Guiyang.

EDAX China User Meeting, Guiyang.

EDAX held a China user meeting in Guiyang, Guizhou province in July 2017. We had a wonderful time with over 100 customers and colleagues. The User Meeting was very interesting; the weather is cool in summer; and the activities after the meeting were great fun.. I have several pictures to show the different moments…
Generally, Guiyang is not very popular with Chinese people. In Shanghai, there are luxuries in Huaihai Road and crowds in Nanjing Road; in Beijing, you find the solemn Tiananmen Square and desolate The Great Wall, but in Guiyang, I just had an impression of a poverty-stricken mountain area. Then I met a friend from Guiyang, she also talked about poverty and the mountain area, but she was much more enthusiastic about the region. She said it was warm in winter and cool in summer; she said the mountain and water were so nice. She was a stylish girl, living an exquisite life; but she always wished she could go back to hometown earlier. From then on, Guiyang became a kind of mystery in my mind.
其实我对贵阳思慕已久。
上海上海,是淮海路的名牌南京路的热闹;北京北京,是天安门的庄严长城的苍凉。贵阳,有什么?大山的贫瘠与封闭?直到当年,我碰到一位朋友,来自贵阳。她也说起大山及贫穷,但是她的话里,那里冬暖夏凉,水暖山温。那位朋友,思想前卫,生活精致,心心念念的,却是早日回家。至此,贵阳,在我心里是颇为神秘的所在。
After so many years, when I arrived in Guiyang, the feeling of mystery and novelty disappeared. The airport looks great and the billboard is modern and impressive. It was no different from other places, except that it’s 10 degrees cooler than Shanghai. I shared this image in ‘wechat’ moments, then got a lot of ’likes’.
一念多年。当踏上这个城市的土地,我所以为的一切,新奇,神秘,通通颠覆。这里的机场不小,广告牌也一派摩登气派。和我去过的地方并无多大不同。除了,比起火炉一般的江浙沪低了十度,发在微信朋友圈,引起一片哀号。看看这一张截图,就拉了多少仇恨。

During the conference our VP Mark Grey came and delivered a corporate introduction. Nan Lin from Singapore and local applications showed new product information: EDS, EBSD, XRF, etc.
开会中……VP Mark过来作公司简介,新加坡的林楠以及国内的应用分别作产品介绍……EDS,EBSD,XRF,嗯,分工明确。

Invited speakers shared their research work in the afternoon. Each one generated lively discussion. The EDAX user meeting is not only an opportunity to show EDAX products, it is also a platform for users’ to communicate with each other and discuss current challenges in microanalysis.
下午各位嘉宾给大家作邀请报告……每个报告都引起了热烈的反应,讨论得不亦乐乎……EDAX的用户会不单是一个产品展示的环节,更是一个用户交流的平台……

Speakers at the China User Meeting 2017

Speakers at the China User Meeting 2017

Imagine the scenery outside. The weather forecast showed 29 degree(Celsius), but it was cool actually. Green trees and a humid atmosphere made the sultry summer go away.
开会中间例行出来拍照,当时天气预报29度,但是风吹得非常凉爽。分明才是初夏的温度,凉风习习的感觉。加上四周绿树葱茏,空气中的润泽气息,盛夏的酷热,早已远离。

 
The hotel located beside Guanshanhu Park, which was gorgeous.
酒店在观山湖公园旁边,风景如画(图片来自百度,笔者拍照无能……)
No one was in this corner of the park. Red flowers were quietly in bloom.
傍晚的公园角落寂寂无人,一丛红花在碎石小径上静静盛开。

We went to Huangguoshu waterfall! The white waterfall poured down. I felt the vapor and steam: it was amazing.
当然这次贵阳之行的精妙处不止于此……还有我最为盼望的——黄果树瀑布!如匹练的白色倾泻直下,瀑布脚下水汽氤氲,在近处感受那赫赫声势,大自然的鬼斧神工,实非人力所能及。
Just behind the hill, the water from the waterfall formed a lake, gentle and quiet.
瀑布积水成湖,湖水温柔静谧。水的另一面。

We also experienced the different culture of the local ethnic minority. Terraced fields, bamboo buildings,songs and dance from local people. Attractive.
我们还顺便见识了少数民族的多样文化。梯田,依山而建的竹楼,以及多姿多彩的歌舞。不虚此行。

Finally, we are looking forward to the next user meeting in China!
流水帐完结处,唯愿年年有今日,岁岁有今朝!

Celebrating the 50th Birthday of Microanalysis

Sia Afshari, Global Marketing Manager, EDAX

The Microscopy & Microanalysis (M&M) Conference is celebrating 50 years of microanalysis at this year’s meeting in St. Louis next week. There is an entire session (A18.3) dedicated to the 50-year anniversary and the historical background of microanalysis from several different perspectives.

My colleague, Dr. Patrick Camus will be presenting the history of EDAX in his presentation, “More than 50 Years of Influence on Microanalysis” at this session and this is a must see for everyone who is at all interested in the historical development and advances in microanalysis!

Looking back at some of the images in the field of microscopy and seeing how far we have come from static spectrum collection to the standardless quantification of complex materials makes me wonder (in a good way!), about the future and especially about the technical possibilities in microanalysis.

Figure 1. Nuclear Diodes EDAX System Interfaced to Cambridge Stereoscan Scanning Electron Microscope – circa 1968

Pat will be describing the evolution of the company from Nuclear Diodes (1962) through EDAX International (1972) and purchase by Philips (1974) to acquisition by Ametek in 2001. Many accomplished microanalysts have been part of the EDAX team along the journey and have contributed enormously to the technical development of microanalysis. The advancements which have been made to date and those which will continue in the future would have not been possible without the dedication and hard work of all these pioneers in this field.

Figure 2. EDAX Element Silicon Drift Detector on a Scanning Electron Microscope – 2017.

At EDAX, which happens to be older than 50 years, I have been honored to meet some of the pioneers of microanalysis. I extend my gratitude to all those whose work has made it possible for us to enjoy the level of sophistication achieved today and we hope to continue their innovative tradition!

Please click here for more information on EDAX at M&M 2017.

XRF: Old Tech Adapting to New Times

Andrew Lee, Senior Applications Engineer, EDAX

X-rays were only discovered by Wilhelm Roentgen in 1895, but by the early 1900’s, research into X-rays was so prolific that half the Nobel Prizes in physics between 1914 to 1924 were awarded in this relatively new field. These discoveries set the stage for 1925, when the first sample was irradiated with X-rays. We’ve immortalized these early founders by naming formulas and coefficients after them. Names like Roentgen and Moseley seem to harken back to a completely different era of science. But here we are today a century later, still using and teaching those very same principles and formulas when we talk about XRF. This is because the underlying physics has not really changed much, and yet, XRF remains as relevant today as it ever was. You can’t say that for something like telephone technology.

XRF has traditionally been used for bulk elemental analysis, associated with large collimators, and pressed pellet samples. For many decades, these commercial units were not the most sophisticated instruments (although Apollo 15 and 16 in 1971 and 1972 included bulk XRF units). Modern hardware and software innovations to the core technique have allowed XRF to adapt to its surroundings in a way, becoming a useful instrument in many applications where XRF previously had little to offer. Micro-XRF was born this way, combining the original principles with newer hardware and software advancements. In fact, micro-XRF is included on the new NASA rover, scheduled for launch to Mars in 2020.

Biological/life sciences is one of those fields where possibilities are now opening as XRF technology progresses. A great example that comes to mind for both professional and personal reasons is the study of neurodegenerative diseases. Many such diseases, such as Parkinson’s, Alzheimer’s, and amyotrophic lateral sclerosis (ALS), exhibit an imbalance in metal ions such as Cu, Fe, and Zn in the human body. While healthy cells maintain “metal homeostasis”, individuals with these neurodegenerative diseases cannot properly regulate, which leads to toxic reactive oxygen species. For example, reduced Fe and Cu levels can catalyze the production of hydroxyl radicals which lead to damaged DNA and cell death. Imaging the distribution of biological metals in non-homogenized tissue samples is critical in understanding the role of these metals, and hopefully finding a cure. The common language between the people who studied physics versus the people who studied brain diseases? Trace metal distribution!

A few years ago, I had the opportunity to analyze a few slices of diseased human tissue in the EDAX Orbis micro-XRF (Figure 1 and 2), working towards proving this concept. Although the results were not conclusive either way, it was still very interesting to be able to detect and see the distribution of trace Cu near the bottom edge of the tissue sample. XRF provided unique advantages to the analysis process, and provided the necessary elemental sensitivity while maintaining high spatial resolution. This potential has since been recognized by other life science applications, such as mapping nutrient intake in plant leaves or seed coatings.

Figure 1. Stitched montage video image of the diseased human tissue slice, with mapped area highlighted in red. Total sample width ~25 mm.

Figure 1. Stitched montage video image of the diseased human tissue slice, with mapped area highlighted in red. Total sample width ~25 mm.

Figure 2. Overlaid element maps: Potassium{K(K) in green} and Copper {Cu(K) in yellow} from mapped area in Figure 1, showing a clear area of higher Cu concentration. Total mapped width ~7.6 mm.

Figure 2. Overlaid element maps: Potassium{K(K) in green} and Copper {Cu(K) in yellow} from mapped area in Figure 1, showing a clear area of higher Cu concentration. Total mapped width ~7.6 mm.

Sometimes, the application may not be obvious, or it may seem completely unrelated. But with a little digging, common ground can be found between the analysis goal and what the instrument can do. And if the technology continues to develop, there seems to be no limit to where XRF can be applied, whether it be outwards into space, or inwards into the human biology.

Aimless Wanderin’ in 3D (Part 3)

Dr. Stuart Wright, Senior Scientist, EDAX

In my research on the origins of the term texture to describe preferred lattice orientation I spent some time looking at one of the classic texts on the subject: Bunge’s “red bible” as we called it in our research group in grad school – Texture Analysis in Materials Science Mathematical Methods (1969). As I was reading I found an interesting passage as it relates to where we are with EBSD today:

“In a polycrystalline material crystallites of different shape, size and orientation are generally present. It can thus also occur that regions of different orientation are not separated from one another by unequivocally defined grain boundaries, but that, on the contrary, the orientation changes continuously from one point to another. If one desires to completely describe the crystal orientation of a polycrystalline material, one must specify the relevant orientation g for each point with coordinates x, y, z within the sample:

g=g(x,y,z)           (3.1)

If one writes g in EULER’s angles, this mean explicitly

φ_1=φ_1 (x,y,z);  Φ=Φ(x,y,z);  φ_2=φ_2 (x,y,z);           (3.2)

One thus requires three functions, each of these variables, which are also discontinuous at grain boundaries. Such a representation of the crystal orientation is very complicated. Where therefore observe that it has as yet been experimentally determined in only a very few cases (see, for example, references 139-141, 200-203), and that its mathematical treatment is so difficult that it is not practically applicable.”

I don’t quote these lines to detract in any way from the legacy of Professor Bunge in the field of texture analysis. I did not know Professor Bunge well but in all my interactions with him he was always very patient with my questions and generous with his time. Professor Bunge readily embraced new technology as it advanced texture analysis forward including automated EBSD. I quote this passage to show that the ideas behind what we might today call 3D texture analysis were germinated very early on. The work on Orientation Coherence by Brent Adams I quoted in Part 2 of this series was one of the first to mathematically build on these ideas. Now with serial sectioning via the FIB or other means coupled with EBSD as well as high-energy x-ray diffraction it is possible to realize the experimental side of these ideas in a, perhaps not routine but certainly, tractable manner.

A schematic of the evolution from pole figure-based ODF analysis to EBSD-based orientation maps to 3D texture data.

Others have anticipated these advancements as well. In chapter 2 of Rudy Wenk’s 1985 book entitled Preferred Orientation in Deformed Metal and Rocks: An introduction to Modern Texture Analysis it states:

“Pole figures and fabric diagrams provide information only about the orientation of crystals. It may be desirable to know the relation between the spatial distribution of grains and grain shape with respect to crystallographic orientation. Orientation relations between neighboring grains further defined the fabric and help to elucidate its significance.”

But let us return to the theme of aimless wanderin’s in texture terminology. The title for Chapter 4 of Bunge’s book is “Expansion of Orientation Distribution Functions in Series of Generalized Spherical Harmonics”. This chapter describes a solution the determination of the three-dimensional ODF (orientation distribution function) from two-dimensional pole figures. The chapter has a sub-title “Three-Dimensional Textures”. The three dimensions in this chapter of Bunge’s book are in orientation space (the three Euler Angles). What we call today a 3D texture is actually a 6D description with three dimensions in orientation space and three spatial dimensions (e.g. x, y and z). And those working with High-Energy x-rays have also characterized spatially resolved orientation distributions for in-situ experiments thus adding a seventh dimension of time, temperature, strain, …

It is nice to know in the nearly 50 years since Bunge’s book was published that what can sometimes appear to be aimless wanderin’s with mixed up terminology has actually lead us to higher dimensions of understanding. But, before we take too much credit for these advances in the “metallurgical arts”, as it says on the Google Scholar home page we “stand on the shoulders of giants” who envisioned and laid the groundwork for these advances.

Journey of Learning: Teaching Yourself the Power of EBSD

Shawn Wallace – Applications Engineer, EDAX

The joy of learning is sadly something that many people forget about and some never really feel. One of the things I like to keep in mind when I am learning something new is that learning is usually not a eureka moment, but a process of combining concepts and ideas already known, to reach a new solution or idea. The reason I was thinking about learning as a process is because recently I found myself forgetting that. A customer sample came in that was, for EBSD, hard in every way: Difficult crystal system/orientation, sample prep issues, poor diffractor. With all those factors, the sample was putting up a fight and winning, mainly because I allowed it to. I had tried all my normal tricks and was not making much headway. I knew the sample was analyzable, but I was not treating the process as a personal learning opportunity, instead I was treating it as a fight that I had to win. I was quickly bouncing from potential solution to potential solution and trying them, without spending much time on thinking what would be best to try and how to tackle the problem as a problem, and not a challenge. I didn’t even frame it that way in my own head until a week later when I was visiting a customer site to do some training.

During the training session, a sample came up with a very different set of problems, but still ones that were stymieing us as we sat at the microscope. I found the user resorting to what I had done previously; just try this and see if it works, without thinking about what the best course of action was. As I sat there, I told them to take a step back and evaluate what the issue was and how we could use our knowledge of all the functions available to us in the TEAM™ software and/or our microscope to find a solution. We sat and talked about the issue and the user was able to come up with a game plan and try some things that would help him reach a solution or gain additional knowledge, aka LEARN. I learned that day – that I sometimes need to treat myself the way I would treat a user. There will always be cases when I don’t know the answer and I have to teach myself the solution.

That leads us to an open question. How do you learn EBSD as you go along? With that in mind, here at EDAX we are going to start a new series of blog posts to discuss the basics of EBSD, from pattern formation, the Hough Transform, and finally indexing. More importantly, I hope to touch on how to troubleshoot issues using your newfound understanding of these concepts and tie the entire processes together as they all play off each other.

My final goal is get your creative juices flowing to dive deeper into understanding the kind of questions that EBSD can answer, and how that, in the end, can provide you with an incredible understanding of your analysis challenges and ultimately a solution to the problem. EBSD is one of the most powerful analytical techniques that I know. It can answer the simple questions (what phase is my sample?) to the incredibly complex (if I squeeze my sample this way, which grains will tend to deform first?). As your knowledge grows, EBSD is one step ahead of you, egging you on to learn more and more. I hope to be your guide on this Journey of Learning. I think I will learn quite a bit too.

Caveat Emptor – Especially with Microanalysis Samples

Matt Nowell – EBSD Product Manager, EDAX

My wife tells me I’m a bit of a hoarder. As we have done our spring cleaning, I’ve found coasters of places I’ve dined around the world, shirts a size (or more) smaller that I haven’t worn in years, and 2 Lego minifigures I bought and forgot to give to the kids. I’ve been forced to admit I didn’t need to keep all this any longer. Of course, as someone who develops and demonstrates EDS and EBSD microanalysis tools, the one thing you can never have too much of is interesting samples. I have drawers full of samples I’ve analyzed, or hope to analyze, and they come in handy when someone wants an interesting example for a customer or presentation.

With that in mind, I’d like to describe my adventures with a new sample I obtained this year. I found a bracelet online that claimed to have 62 elements. To me, that seemed wonderful, and potentially a great sample for EDS and EBSD analysis. I ordered one, and anxiously awaited its delivery.

When it arrived, and I opened it, I immediately became a bit suspicious. For the size and volume of material, it felt very light. I have a set of metal coupons that are all the same size but different alloys and materials, and there is a significant different in feel between different alloys. I guessed it was aluminum, but would use EDS and EBSD to determine the composition.

It was an interesting characterization problem though – potentially it contained 62 elements, but I didn’t know the concentration or spatial distribution of these elements. I started with EDS, and used my Octane Elite EDS detector. Initially I set up the SEM for 20kV analysis, with ≈15kcps output through the detector with ≈ 30% deadtime. Under these conditions, the resolution of the EDS detector was 122.8eV. I imaged a 600µm x 800µm area of the bracelet, and collected EDS spectra for 1, 10, 100, 1000, and 10,000 seconds. The signal to background increases as the square of the time collected, so for each 10X increase, I expected to improve the detection by about a factor of 3.

Figure 1. EDS Spectra collected for 10,000 Live Seconds

Figure 1 shows the EDS spectra collected for 10,000 live seconds. With careful review and analysis, I was able to identify 22 of the possible 62 claimed elements. Aluminum had the largest peak, and had the highest concentration. Of course, I knew I was only sampling the surface, and made no attempt to section into the sample. There was also a strong oxygen peak, which I would attribute to an oxidation layer. Most other detectable elements were present in smaller concentrations. Figures 2 and 3 show an energy range between 7.75eV – 9.00 eV, where the k-line peaks for nickel, zinc, and copper are present, for 10 and 10,000 live seconds of collection. These elements were selected because they were present in low concentrations. At 10 live seconds, these peaks are very noisy but present, and additional collection time significantly improves their distribution shape and counting statistics.

Figure 2. EDS Spectra collected for 10 Live seconds with 15kcsp output

Figure 3. EDS Spectra collected for 10,000 Live Seconds with 15kcsp output

Knowing that better counting improves lower limits of detection, I increased the beam current on the SEM to obtain ≈215kcps output counts, and then collected spectra over the same time intervals.* Figure 4 shows the collection under these conditions after 10,000 live seconds. I should note that while I analyzed the same size area, I did not analyze the exact same area, so it is possible any variations could be due to this approach.

Figure 4. EDS Spectra collected for 10,000 Live Seconds with 215kcps output

At this point, I had a lot of data, but increasing the count rate did not reveal any more elements than were initially detected. To evaluate performance, I quantified each spectra, and focused my analysis on the nickel, zinc, and copper elements. The weight percentage of each of these elements is shown in Figure 5 for each collection time and count rate. Each element has the same color (blue for Nickel, red for Zinc, and black for Copper), the lower count rate lines have a marker, while the higher count rate lines do not.

Figure 5. Weight percentage of selected elements as a function of acquisition time and output count rate

To me, this data was very impressive. Except for the 1 and 10 live second collections at the lower output count rate, the consistency of the data was good, even with concentrations of less than 1 weight percentage. The quantification output does give an error percentage value, and rule-of-thumb acceptance criteria was met after 100 live seconds collection at the lower count rate and 10 live seconds collection at the higher count rate. The fact that I continued to collect data for significantly longer times past this point would suggest that the remaining elements are either not-present, not at the surface where I am analyzing, or are present at concentrations lower than my detection limits.

I also wanted to look at this sample structurally, hoping for an interesting multiphase sample with pretty microstructures I could hang in the hall. I sectioned the sample, and polished a portion for EBSD analysis. The PRIAS + IPF Orientation map is shown in figure 6. I was able to index 99.7% of the collected points with high confidence using the aluminum FCC material file. It has a very large grain structure. I did see a number of smaller Fe precipitates, but I have not examined at higher magnification yet.

Figure 6. PRIAS + IPF Orientation map .

All in all, it didn’t turn out to be the sample I had hoped for, but was good to help think about collecting EDS data for both accuracy and sensitivity. I’ll have to share the sample with other colleagues for WDS and µXRF analysis to see if we can find more of these missing elements.

For more information on quantative analysis with EDS, join our upcoming webinar, ‘Practical Quantitative Analysis – How to optimize the accuracy of your data’. Please click here to register.

Aimless Wanderin’ at the Meso-Scale (Part 2)

Dr. Stuart Wright, Senior Scientist, EDAX

If my memory is functioning correctly, I believe Val Randle coined the term “meso-texture” to describe the texture associated with the misorientations at grain boundaries.

I confess that, whenever I hear the term, I chuckle. This is because of a humorous memory tied to the first paper I was involved with. I was an undergraduate at Brigham Young University (BYU) at the time. The lead author, Brent Adams, later became my PhD advisor. The ideas presented in this work became the motivation behind my PhD work to automate EBSD.

B. L. Adams, P. R. Morris, T. T. Wang, K. S. Willden and S. I. Wright (1987). “Description of orientation coherence in polycrystalline materials.” Acta Metallurgica 35: 2935-2946.

The paper describes some impressive work on the mathematical side by Brent and Peter and painstaking work by Tong-Tsung Wang who did hundreds of manual orientation measurements from individual grains in several planar sections of aluminum tubing using selected area diffraction. My role was digitize the microstructures in such a way that the two-point orientation correlations could be computed. The following is an example of one section plane from this work.

Digitized microstructure of one half of one section of a total of 10 sections used in the calculation of the orientation coherence function for aluminum tubing. Each grain number represents a individual grain orientation measurement.

The experimental work was a major undertaking. Thus, Brent Adams was so interested to hear David Dingley’s talk on EBSD at ICOTOM 8 in Santa Fe in 1987 shortly after this paper was published. Brent envisioned a fully automated system to link crystallographic orientation with microstructure via EBSD.

One of the interesting findings of this work was the discovery of a Meso-Structure:

“The strong implication of Table 2 is that there exists a new scale of microstructure in the material (and presumably in other polycrystalline materials) which has not previously been characterized, or even observed except in a qualitative manner. It seems appropriate to identify this new scale of microstructure as mesostructured since it clearly pertains to clusters or aggregates of grains or crystallites”

Greek statue who seems to be suppressing a chuckle.
Source: www.britannica.com/art/Archaic-smile

After this paper was published Brent received a letter from Sir Charles Frank. Sir Charles expressed his interest and appreciation for the ideas presented in the work. However, he objected to the term Meso-Structure. One of his objections was that “Meso” has its roots in Greek, but “Structure” is Latin. He didn’t like that we were mixing words of different etymological origins. I have to think this criticism was given “tongue in cheek” as the term microstructure with which Sir Charles was well familiar also mixes Greek and Latin. Thus, whenever I hear the term mesotexture used to describe grain boundary or misorientation texture I have to chuckle given it’s mix of the Greek “meso” and Latin “texture”.

I’m not sure what the best term is to describe the preferred misorientation of grain boundaries. The community uses the terms misorientation, disorientation, orientation difference and others sometimes as synonyms and at other times with differences in meaning. As all aimless wanderin’s tend to leave crisscrossing tracks, I note that my first exposure to the use of Rodrigues Vectors, which lend themselves well to describing misorientation, was by Sir Charles Frank at ICOTOM 8 in Santa Fe.

I hope my aimless wanderin’s through odd terminology and anecdotal history doesn’t leave you too disoriented 😊

(Next in this series are some ruminations on the term “3D texture”).