To Attend, or Not to Attend Trade Shows? That is the Question!

Roger Kerstin – US Sales Manager, EDAX

From the point of view of a regional Sales Manager, for a long time, trade shows were the ultimate way to bring in new customers and reach many of your existing customers all at the same time. However, previously gigantic shows like Pittcon now continue to get smaller and smaller every year. When I attended my first Pittcon in 2000, it was so big that only a few venues in the country could host it. Now it seems that it could be placed anywhere and there is no longer a size issue. With more focus on the internet the trade shows almost seem like they are not needed any longer.

EDAX at AAFS EDAX at TMS

As you see I said almost. I do feel that participation in tradeshows is and will continue to be important for a long time both for vendors/exhibitors and customers/participants. As exhibitors, they allow us to meet with current customers, see new and exciting trends and/or products, and talk to potential new customers. All of this in one place. Yes, it can be expensive to attend these shows all the time, especially the larger ones but let’s just think about the cost in more detail. Let’s think about it from the perspective of the exhibitor. If we get 50 leads from a larger show that maybe costs $25,000. Wow, that’s $500 per lead. If I were to go out and try to visit 50 potential customers it would take weeks and there would be a lot of travel and a lot more expense. I would say that overall we would probably spend more to visit these 50 potential customers across the region and it would take 4-5 times as long. So not only are we spending more money, we are taking valuable time in doing so.

Sometimes I hear that the exhibitors are saying the show is too long, or that it was a waste of money. I can even say that I have said that in the past as well, but if we look at the bigger picture, it really isn’t that bad. At a trade show we not only have attendees that are there to look, learn, and possibly purchase products or services. They are also coming to see us or other companies like ours and we can be passive and not get a lot out of it or we can be nice, friendly, and accessible. If we are the latter, then we potentially can start up a new relationship with a new customer. At some shows we also have a team there that usually wouldn’t be with us on the door-to-door visits. At a show, we may have product support, sales, service and if needed can address all avenues with one meeting. Potential customers have a chance to see new technology advancements at close hand and can even request an individual demo at a given event. To do this elsewhere would be costlier and more time consuming for both us and for our customers.

EDAX with TESCAN at Pittcon 2017 EDAX at M&M 2016

Some of these large shows probably do need to be shortened as it seems at some of them, the last day is a time where the vendors meet vendors and not a lot of customers are coming around, but even on that note it could be beneficial as this is where we make connections with others doing similar things and there could potentially be partnerships or mutually beneficial outcomes. In short, I will continue to support the value of our events and tradeshow attendance – we look forward to seeing you at ‘M&M 2017’!

My New Lab Partner

Matt Nowell, EBSD Product Manager, EDAX

It has been an exciting month here in our Draper Utah lab, as we have received and installed our new FEI Teneo FEG SEM. We are a small lab, focusing on EBSD development and applications, and without a loading dock, so timing is critical when scheduling the delivery. So, 3 months ago, we looked at the calendar to pick a day with sunshine and without snow. Luckily, we picked well.

Figure 1: Our new SEM coming off the truck.

Figure 1: Our new SEM coming off the truck.

Once we got the new instrument up and running, of course the next step was to start playing with it. This new SEM has a lot more imaging detectors than our older SEM, so I wanted to see what I could see with it. I chose a nickel superalloy turbine blade with a thermal barrier coating, as it had many phases for imaging and microanalysis. The first image I collected was with the Everhart-Thornley Detector (ETD). For each image shown, I relied on the auto contrast and brightness adjustment to optimize the image.

Figure 2: ETD image

Figure 2: ETD image

With imaging, contrast is information. The contrast in this image shows phase contrast. On the left, gamma/gamma prime contrast is visible in the Nickel superalloy while different distinct regions of the barrier coating are seen towards the right. The next image I collected was with the Area Backscatter Detector (ABS). This is a detector that is positioned under the pole piece for imaging. With this detector, I can use the entire detector, the inner annular portion of the detector, or any of three regions towards the outer perimeter of the detector.

Figure 3: ABS Detector image.

Figure 3: ABS Detector image.

I tried each of the different options, and I selected the inner annular ring portion of the detector. Each option provided similar contrast as seen in Figure 3, but I went with this based on personal preference. The contrast is like the ETD contrast is Figure 2. I also compared with the imaging options using the detector in Concentric Backscatter (CBS) mode, where 4 different concentric annular detectors are available.

Figure 4: T1 Detector (a-b mode).

Figure 4: T1 Detector (a-b mode).

My next image used the T1 detector, which to my understanding is an in-lens detector. In this mode, I selected the a – b mode, so the final image is obtained by subtracting the image from the b portion of the detector from the a portion of the detector. I selected this image because the resultant contrast is reversed from the first couple of images. Here phases that were bright are now dark, and detail within the phases is suppressed.

Figure 5: T2 Detector.

Figure 5: T2 Detector.

My final SEM image was collected with the T2 detector, another in-lens detector option. Here we see the same general phase contrast, but the contrast range is more limited and the detail within regions is again suppressed.

I have chosen to show this set of images to illustrate how different detectors, and their positioning, can generate different images from the area, and that the contrast/information obtained with each image can change. Now I have done a cursory interpretation of the image contrast, but a better understanding may come from reading the manual and knowing the effects of the imaging parameters used.

Figure 6: Always Read the Manual!

Figure 6: Always Read the Manual!

Of course, I’m an EBSD guy, so I also want to compare this to what I can get using our TEAM™ software with Hikari EBSD detectors. One unique feature we have in our software is PRIAS™, which uses the EBSD detector as an imaging system. With the default imaging mode, it subsets the phosphor screen image into 25 different ROI imaging detectors, and generates an image from each when the beam is scanned across the area of interest. Once these images are collected, they can be reviewed, mixed, added, subtracted, and colored to show the contrast of interest, similar to the SEM imaging approach described above.

The 3 most common contrasts we see with PRIAS™ are phase, orientation, and topographic. To capture these, we also have a mode where 3 pre-defined regional detectors are collected during EBSD mapping, and the resulting images available with the EBSD (and simultaneous EDS) data.

Figure 7: PRIAS™ Top Detector Image.

Figure 7: PRIAS™ Top Detector Image.

The first ROI is positioned at the top of the phosphor screen, and the resulting phase contrast is very similar to the contrast obtained with the ETD and ABS imaging modes on the SEM.

Figure 8: PRIAS™ Center Detector Image.

Figure 8: PRIAS™ Center Detector Image.

The second ROI is positioned at the center of the phosphor screen. This image shows more orientation contrast.

Figure 9: PRIAS™ Bottom Detector Image.

Figure 9: PRIAS™ Bottom Detector Image.

The third ROI is positioned at the bottom of the phosphor screen. This image shows more topographical contrast. All three of these images are complementary, both to each other but also to the different SEM images. They all give part of the total picture of the sample.

Figure 10: Defining Custom ROIs in PRIAS™.

Figure 10: Defining Custom ROIs in PRIAS™.

With PRIAS™ it is also possible to define custom ROIs. In Figure 10, 3 different ROIs have been drawn within the phosphor screen area. The 3 corresponding images are then generated, and these can be reviewed, mixed, and then selected. In this case, I selected an ROI that reversed the phase contrast, like the contrast seen with the T1 detector in Figure 4.

Figure 11: PRIAS™ Center Image with EDS Bland Map (Red-Ni, Blue – Al, Green-Zr)

Figure 12: PRIAS™ Center Image with Orientation Map (IPF Map Surface Normal Direction).

figure-12a

Of course, the PRIAS™ information can also be directly correlated with the EDS and EBSD information collected during the mapping. Figure 11 shows an RGB EDS map while Figure 12 shows an IPF orientation map (surface normal direction with the corresponding orientation key) blended with the PRIAS™ center image. Having this available adds more information (via contrast) to the total microstructural characterization package.

I look forward to using our new SEM, to develop new ideas into tools and features for our users. I imagine a few new blogs posts should come from it as well!

The Hough Transform – An Amazing Tool.

Shawn Wallace, Applications Engineer, EDAX

Part of my job is understanding and pushing the limits of each part of our systems. One of the most fundamental parts of the EBSD system is the Hough Transform. The Hough Transform role is finding the lines on an EBSD pattern. This is the first step in indexing a pattern (Fig. 1). If this step is not consistent, the quality of any indexing and any derivative data is questionable. A normal user does not really need to understand all the intricacies of every part of the system, but it still is worthwhile to understand how your data and data quality can be affected.

Figure 1: On the left are the overlaid lines found via the Hough Transform. On the right is the Indexed solution overlaid based on the Hough. The quality of the indexed solution is based on the quality of the Hough.

Figure 1: On the left are the overlaid lines found via the Hough Transform. On the right is the Indexed solution overlaid based on the Hough. The quality of the indexed solution is based on the quality of the Hough.

With that in mind, I ran an experiment on a steel sample to see how far the Hough could be pushed and still give consistent indexing. For this experiment, I used our Hikari Super at a series of different binnings between its native resolution of 640X480 Pixels at 1×1 binning down to 35×26 pixels at 18×18 binning. All pixel resolutions are noted in Table 1. I kept my Hough Settings and beam settings consistent. My only other variable was exposure to get the camera to be equally saturated at around 0.85 saturation.

I expected the lower binning Patterns to be consistent and they were (Fig. 2). All three Euler Angles between the 1×1, 2×2, 4×4, and 8×8, were within 0.4 degrees of each other. Pushing the camera and the Hough even further really surprised me though.

Figure 2: Indexed Pattern for the lower binning showed a remarkable consistency in indexing.

Figure 2: Indexed Pattern for the lower binning showed a remarkable consistency in indexing.

Figure 3: The indexing results still held their consistency even for highest binning settings used.

Figure 3: The indexing results still held their consistency even for highest binning settings used.

I expected some drop off with the consistency of the orientation when I dropped my binning to 10×10, 16×16, and even 18×18 and it did not fully materialize (Fig. 3). The range did broaden in the Euler Angles, specifically ᶲ₂’s range increased to 3 degrees, but that is change of <1% given the entire range for ᶲ₂ is 360 degrees. Table 1 shows the data is the raw form. Overall, the data is great, from low to high binning with minimal loss in in our indexing metrics (CI and Fit) and consistency in Euler Angles except for the 18×18 binning. That is where we have found our limit, specifically when it comes to indexing metrics. We see a sharp drop off in the CI. The pixilation of the pattern has gotten to a point where it is difficult to find a unique solution. This drop off is why we tell our customer that 16×16 is the limit of binning they should use for reliable, high quality data.

Table 1. Indexing Metrics and Euler Angles for all data points.

Table 1. Indexing Metrics and Euler Angles for all data points.

With all that said, most EBSD work is not on a single orientation, but a map. Does this hold true on a map? It does. In Figure 4 and Figure 5, we can see the mapping results for 2×2 binning and 10×10 binning. Both indexed at 99.9% with their average CI’s being 0.89 and 0.84 respectively, with very little change in orientations. This level of data quality across binnings is why EDAX uses the Hough. It is an amazing little tool.

Figure 4. This map was taken at 2x2 binning. Internal deformation of the grains is visible, with inclusions between relatively undeformed.

Figure 4. This map was taken at 2×2 binning. Internal deformation of the grains is visible, with inclusions between relatively undeformed.

Figure 5. This map was taken at 10x10 binning in approximately the same area as Figure 4. Again, internal deformation is showed in the larger grain, while the inclusions are undeformed.

Figure 5. This map was taken at 10×10 binning in approximately the same area as Figure 4. Again, internal deformation is showed in the larger grain, while the inclusions are undeformed.

Considerations for your New Year’s Resolutions from Dr. Pat

Dr. Patrick Camus, Director of Research and Innovation, EDAX

The beginning of the new calendar year is a time to reflect and evaluate important items in your life. At work, it might also be a time to evaluate the age and capabilities of the technical equipment in your lab. If you are a lucky employee, you may work in a newly refurbished lab where most of your equipment is less than 3 years old. If you are such a fortunate worker, the other colleagues in the field will be envious. They usually have equipment that is much more than 5 years old, some of it possibly dating from the last century!

Old Jalopy circa 1970 EDAX windowless Si(Li) detector circa early 70’s

In my case, at home my phone is 3 years old and my 3 vehicles are 18, 16, and 3 years old. We are definitely evaluating the household budget this year to upgrade the oldest automobile. We need to decide what are the highest priority items and which are not so important for our usage. It’s often important to sort through the different features offered and decide what’s most relevant … whether that’s at home or in the lab.

Octane Elite Silicon Drift Detector 2017 Dr. Pat’s Possible New Vehicle 2017

If your lab equipment is older than your vehicles, you need to determine whether the latest generation of equipment will improve either your throughput or the quality of your work. The latest generations of EDAX equipment can enormously speed up throughput and the improve quality of your analysis over that of previous generations – it’s just a matter of convincing your boss that this has value for the company. There is no time like the present for you to gather your arguments into a proposal to get the budget for the new generation of equipment that will benefit both you and the company.
Best of luck in the new year!

Molecular Machines are the Future…

René Jansen, Regional Manager, Europe

The ground in the north of Holland was recently shaking and not because of an earthquake, but because Professor Ben Feringa from the University of Groningen has won the 2016 Nobel Prize in Chemistry for his work on the development of molecular machines.
Feringa discovered the molecular motor — a light-driven rotary molecular motor – which is widely recognized as a spectacular scientific breakthrough.

Electrically driven directional motion of a four-wheeled molecule on a metal surface

Electrically driven directional motion of a four-wheeled molecule on a metal surface

‘Building a moving molecule is not that difficult in itself, but being able to steer it, have control over it, is a different matter.’, he said. Years ago he already presented the first molecular motor, consisting of a molecule, part of which performed a full rotation under the influence of light and heat. He has designed many different engines since, including a molecular ‘4-wheel drive’ car. By fixating the engine molecules to a surface, he developed a nano ‘mill park’ in which the mills rotate when exposed to light. And last year he described the world’s first symmetrical molecular engine. Feringa also succeeded in putting these molecular engines to work, having them turn a glass cylinder 10,000 times their size. Amazing.

Feringa is internationally recognized as a pioneer in the field of molecular engines. One of the potential applications of his engines is the delivery of medication inside the human body.
1475681659
I recently heard an interview with him, in which he promoted the idea that universities should be playgrounds, where scientists must be able to do whatever they want to create real breakthroughs. Today, the ability of universities to create these playgrounds is limited due to a constant reduction of budgets over recent years. It would be interesting to know how the University of Groningen has managed to do this.

Another, less famous, department at the University of Groningen is working on the formation/deformation of materials which are exposed to high temperature (> 1000 degrees Celsius). Measuring EBSD patterns while temperature increases, shows that new crystals are formed at a certain temperature. Now my hopes are that this “playground” too will end up in a few years from now with a Nobel prize for a breakthrough in Materials Science.

Adding a New Dimension to Analysis

Dr. Oleg Lourie, Regional Manager A/P, EDAX

With every dimension, we add to the volume of data, we believe that we add a new perspective in our understanding and interpretation of the data. In microanalysis adding space or time dimensionality has led to the development of 3D compositional tomography and dynamic or in situ compositional experiments. 3D compositional tomography or 3D EDS is developing rapidly and getting wider acceptance, although it still presents challenges such as the photon absorption, associated with sample thickness and time consuming acquisition process, which requires a high level of stability, especially for TEM microscopes. After setting up a multi hour experiment in a TEM to gain a 3D compositional EDS map, one may wonder Is there any shortcut to getting a ‘quick’ glimpse into 3-dimensional elemental distribution? The good news is that there is one and compared to tilt series tomography, it can be a ‘snapshot’ type of the 3D EDS map.

3D distribution of Nd in steel.

3D distribution of Nd in steel.

To enable such 3D EDS mapping on the conceptual level we would need at least two identical 2D TEM EDS maps acquired with photons having different energy – so you can slide along the energy axis (adding a new dimension?) and use photon absorption as a natural yardstick to probe the element distribution along the X-ray path. Since the characteristic X-rays have discrete energies (K, L, M lines), it might work if you subtract the K line map from the L line or M line map to see an element distribution based on different absorption between K and L or M line maps. Ideally, one of EDS maps should be acquired with high energy X-rays, such as K lines for high atomic number elements, and another with low energy X-rays where the absorption has a significant effect, such as for example M lines. Indeed, in the case of elements with a high atomic number, the energies for K lines area ranged in tens of keV having virtually 0 absorption even in a thick TEM sample.

So, it all looks quite promising except for one important detail – current SDDs have the absorption efficiency for high energy photons close to actual 0. Even if you made your SDD sensor as large 150 mm2 it would still be 0. Increasing it to 200 mm2 would keep it steady close to 0. So, having a large silicon sensor for EDS does not seem to matter, what matters is the absorption properties of the sensor material. Here we add a material selection dimension to generate a new perspective for 3D EDS. And indeed, when we selected a CdTe EDS sensor we would able to acquire X-rays with the energies up to 100 keV or more.

To summarize, using a CdTe sensor will open an opportunity for a ‘snapshot’ 3D EDS technique, which can add more insight about elemental volume distribution, sample topography and will not be limited by a sample thickness. It would clearly be more practical for elements with high atomic numbers. Although it might be utilized for a wide yet selected range of samples, this concept could be a complementary and fast (!) alternative to 3D EDS tomography.

Rotary Engines Go “Round and Round”

Dr. Bruce Scruggs, XRF Product Manager EDAX

Growing up outside of Detroit, MI, automobiles were ingrained in the culture, particularly American muscle cars. I was never a car buff but if I said little and nodded knowingly during these car discussions, I could at least survive. Engine displacement? Transmission? Gear ratios? Yep, just nod your head and grunt a little bit. Well, it turns out working at EDAX that I’ve run into a couple of serious car restoration experts. There always seems to be a common theme with these guys: how do I get more power out of this engine?

Recently, one of these restoration experts brought in a small section of the rotor housing of a Mazda engine circa early ‘80s. Turns out, this guy likes to rebuild Mazda engines, tweak the turbocharging and race them. As we all know, Mazda was famous for commercializing the Wankel engine, aka the rotary engine, to power their cars. Rotary engines are famous for their simplicity and the power one can generate from a relatively small engine displacement. These engines are also infamous (i.e. poor fuel consumption and emissions) as well which has led Mazda to end general production in roughly 2012 with the last of the production RX-8s.

Now, one of the questions in rebuilding these engines is how to repair and resurface the oblong rotor housing. In older engines of this type, the surface of the rotor housing can suffer deep gouges. The gouges can be filled and then need to be resurfaced. Initially, we imaged the cross-section of the rotor housing block in an Orbis PC micro-XRF spectrometer to determine what was used to surface coat the rotor housing. If you read up on this engine, (it’s a 12A variant), the block is aluminum with a cast iron liner and a hard chromium plating. The internet buzz claims the liner is installed via a “sheet metal insert process”. And when I google “sheet metal insert process” all I get are links to sheet metal forming and links referring to webpages which have copied the original reference to “sheet metal insert process”.

In the following Orbis micro-XRF maps (Figures 1a and 1b), you can see the aluminum rotor housing block and the cast iron liner. Each row of the map is about 100 µm wide with the iron liner being about 1.5 mm thick. If you look carefully, you can also see the chrome coating on the surface of the iron liner. On the cross-section, which was done with a band saw cut, the chrome coating is about one map pixel across. So, it’s less than 100 µm thick. From web searches, hard chrome plating for high wear applications start at around 25 µm thick and range up to hundreds of microns thick. For very thick coatings, they are ground or polished down after the plating process to achieve more uniform application. So, what is found in the elemental map is consistent with the lower end of web-based information for a hard chrome coating, bearing in mind that the coating measured had well over 150k miles of wear and tear. If we had a rotor housing with less wear and tear, we could use XRF to make a more proper measurement of the chrome plating thickness and provide a better estimate of the original manufacturer’s specification on the hard chrome thickness.

Figure 2: Orbis PC elemental map

Figure 1a: Orbis PC elemental map

Overlay of 4 elements:
Fe: Blue (from the cast iron liner)
Al: Green (from the aluminum rotor housing block)
Cr: Yellow (coating on the cast iron liner)
Red: Zinc (use unknown)

Figure 3: Total counts map: Lighter elements such as Al generate fewer X-ray counts and appear darker than the brighter, heavy Fe containing components.

Figure 1b: Total counts map: Lighter elements such as Al generate fewer X-ray counts and appear darker than the brighter, heavy Fe containing components.

We did have a look at the chrome coating by direct measurement with both XRF, looking for alloying elements such as Ti, Ni, W and Mo, as well as SEM-EDS looking for carbides and nitrides. We found that it’s simply a nominally, pure chrome coating with no significant alloying elements. We did see some oxygen using SEM-EDS, but that would be expected on a surface that has been exposed to high heat and combustion for thousands of operating hours. Again, these findings are consistent with a hard chrome coating.

In some on-line forum discussions, there was even speculation that the chrome coating was micro-porous to hold lubricant. So, we also looked at the chrome surface under high SEM magnification (Figure 2). There are indeed some voids in the coating, but it doesn’t appear that they are there by design, but rather that they are simply voids associated with the metal grain structure of the coating or perhaps from wear. We specifically targeted a shallow scratch in the coating, looking for indications of sub-surface porosity. The trough of the scratch shows a smearing of the chrome metal grains but nothing indicating designed micro-porosity.

Figure 4: SEM image of chrome plated surface of rotor housing liner. The scratch running vertically in the image is about 120 µm thick.

Figure 2: SEM image of chrome plated surface of rotor housing liner. The scratch running vertically in the image is about 120 µm thick.

The XRF maps in Figure 1 also provides some insight into the sheet metal insert process. The cast iron liner appears to be wrapped in ribbons of aluminum alloy and iron. The composition of the iron ribbon (approximately 1 wt% Mn) is about the same as the liner. But, the aluminum alloy ribbon is higher in copper content than the housing block. This can be seen in the elemental map (Figure 1a) where the aluminum ribbon is a little darker green, lower Al signal intensity, than the housing block itself. The map also shows a thread of some zinc bearing component running through (what we speculate are) the wrappings around the liner. My best guess here is that it is some sort of joining compound. Ultimately, the sheet metal insert process involves a bit more than a simple press or shrink fit of a cylinder sleeve in a piston engine block. Nod knowingly and grunt a little.