OIM

How to Get a Good Answer in a Timely Manner

Shawn Wallace, Applications Engineer, EDAX

One of the joys of my job is troubleshooting issues and ensuring you acquire the best results to advance your research. Sometimes, it requires additional education to help users understand a concept. Other times, it requires an exchange of numerous emails. At the end of the day, our goal is not just to help you, but to ensure you get the right information in a timely manner.

For any sort of EDS related question, we almost always want to look at a spectrum file. Why? There is so much information hidden in the spectrum that we can quickly point out any possible issues. With a single spectrum, we can quickly see if something was charging, tilted, or shadowed (Figure 1). We can even see weird things like beam deceleration caused by a certain imaging mode (Figure 2). With most of these kinds of issues, it is common to run into major quant related problems. Any quant problems should always start with a spectrum.

Figure 1. The teal spectrum shows a strange background versus what a normal spectrum (red) should look like for a material.

Figure 1. The teal spectrum shows a strange background versus what a normal spectrum (red) should look like for a material.

This background information tells us that the sample was most likely shadowed and that rotating the sample to face towards the detector may give better results.

Figure 2. Many microscopes can decelerate the beam to help with imaging. This deceleration is great for imaging but can cause EDS quant issues. Therefore, we recommend reviewing the spectrum up front to reduce the number of emails to troubleshoot this issue.

Figure 2. Many microscopes can decelerate the beam to help with imaging. This deceleration is great for imaging but can cause EDS quant issues. Therefore, we recommend reviewing the spectrum up front to reduce the number of emails to troubleshoot this issue.

To save the spectrum, right-click in the spectrum window, then click on Save (Figure 3). From there, save the file with a descriptive name, and send it off to the applications group. These spectrum files also include other metadata, such as amp time, working distance, and parameters that give us so many clues to get to the bottom of possible issues.

Figure 3. Saving a spectrum in APEX™ is intuitive. Right-click in the area and a pop-up menu will allow you to save the spectrum wherever you want quickly.

Figure 3. Saving a spectrum in APEX™ is intuitive. Right-click in the area and a pop-up menu will allow you to save the spectrum wherever you want quickly.

For information on EDS backgrounds and the information they hold, I suggest watching Dr. Jens Rafaelsen’s Background Modeling and Non-Ideal Sample Analysis webinar.

The actual image file can also help us confirm most of the above.

Troubleshooting EBSD can be tricky since the issue could be from sample prep, indexing, or other issues. To begin, it’s important to rule out any variances associated with sample preparation. Useful information to share includes a description of the sample, as well as the step-by-step instructions used to prepare the sample. This includes things like the length of time, pressure, cloth material, polishing compound material, and even the direction of travel. The more details, the better!

Now, how do I know it is a sample prep problem? If the pattern quality is low at long exposure times (Figure 4) or the sample looks very rough, it is probably related to sample preparation (Figure 4). That being said, there could be non-sample prep related issues too.

Figure 4. This pattern is probably not indexable on its own. Better preparation of the sample surface is necessary to index and map this sample correctly.

Figure 4. This pattern is probably not indexable on its own. Better preparation of the sample surface is necessary to index and map this sample correctly.

For general sample prep guidelines, I would highly suggest Matt Nowell’s Learn How I Prepare Samples for EBSD Analysis webinar.

Indexing problems can be challenging to troubleshoot without a full data set. How do I know my main issues could be related to indexing? If indexing is the source, a map often appears to be very speckled or just black due to no indexing results. For this kind of issue, full data sets are the way to go. By full, I mean patterns and OSC files. These files can be exported out of TEAM™/APEX™. They are often quite large, but there are ways available to move the data quickly.

For the basics of indexing knowledge, I suggest checking out my latest webinar, Understanding and Troubleshooting the EDAX Indexing Routine and the Hough Parameters. During this webinar, we highlight attributes that indicate there is an issue with the data set, then dive into the best practices for troubleshooting them.

As for camera set up, this is a dance between the microscope settings, operator’s requirements, and the camera settings. In general, more electrons (higher current) allow the experiment to go faster and cover more area. With older CCD based cameras, understanding this interaction was key to good results. With the newer Velocity™ cameras based on CMOS technology, the dance is much simpler. If you are having difficulty while trying to optimize an older camera, the Understanding and Optimizing EBSD Camera Settings webinar can help.

So how do you get your questions answered fast? Bury us with information. More information lets us dive deeper into the data to find the root cause in the first email, and avoids a lengthy back and forth exchange of emails. If possible, educate yourself using the resources we have made available, be it webinars or training courses. And always, feel free to reach out to my colleagues and me at edax.applications@ametek.com!

What a Difference a Year Makes

Jonathan McMenamin, Marketing Communications Coordinator, EDAX

EDAX is considered one of the leaders in the world of microscopy and microanalysis. After concentrating on advancements to our Energy Dispersive Spectroscopy (EDS) systems for the Scanning Electron Microscope (SEM) over the past few years, EDAX turned its attention to advances in Electron Backscatter Diffraction (EBSD) and EDS for the Transmission Electron Microscope (TEM) in 2019.

After the introduction of the Velocity™ Plus EBSD camera in June 2018, which produces indexing speeds greater that 3,000 indexed points per second, EDAX raised the bar further in 2019. In March, the company announced the arrival of the fastest EBSD camera in the world, the Velocity™ Super, which can go 50% faster at 4,500 indexed points per second. This was truly a great accomplishment!

EBSD orientation map from additively manufactured Inconel 718 collected at 4,500 indexed points per second at 25 nA beam current.

EBSD orientation map from additively manufactured Inconel 718 collected at 4,500 indexed points per second at 25 nA beam current.

Less than three months later, EDAX added a new detector to its TEM product portfolio. The Elite T Ultra is a 160 mm2 detector that offers a unique geometry and powerful quantification routines for comprehensive analysis solutions for all TEM applications. The windowless detector’s geometric design gives it the best possible solid angle to increase the X-ray count rates for optimal results.

EDAX Elite T Ultra EDS System for the TEM

EDAX Elite T Ultra EDS System for the TEM.

Just before the annual Microscopy & Microanalysis conference, EDAX launched the OIM Matrix™ software module for OIM Analysis™. This new tool gives users the ability to perform dynamic diffraction-based EBSD pattern simulations and dictionary indexing. Users can now simulate EBSD patterns based on the physics of dynamical diffraction of electrons. These simulated patterns can then be compared to experimentally collected EBSD patterns. Dictionary indexing helps improve indexing success rates over standard Hough-based indexing approaches. You can watch Dr. Stuart Wright’s <a href=”https://youtu.be/Jri181evpiA&#8221; target=”_blank”>presentation from M&M</a> for more information.

Dictionary indexing flow chart and conventional indexing results compared with dictionary indexing results for a nickel sample with patterns collected in a high-gain/noisy condition.

Dictionary indexing flow chart and conventional indexing results compared with dictionary indexing results for a nickel sample with patterns collected in a high-gain/noisy condition.

EDAX has several exciting product announcements on the way in early 2020. We have teased a two of these releases, APEX™ Software for EBSD and the Clarity™ Direct Electron Detector. APEX™ EBSD will give users the ability to characterize both compositional and structural characteristics of their samples on the APEX™ Platform. It gives them the ability to collect and index EBSD patterns and EBSD maps, as well as allow for simultaneous EDS-EBSD collection. You can learn more about APEX™ EBSD in the September issue of the Insight newsletter and in our “APEX™ EBSD – Making EBSD Data Collection How You Want It” webinar.

EBSD of a Gibeon Meteorite sample covering a 7.5 mm x 6.5 mm area using ComboScan for large area analysis.

EBSD of a Gibeon Meteorite sample covering a 7.5 mm x 6.5 mm area using ComboScan for large area analysis.

The Clarity™ is the world’s first commercial direct electron detector (DeD) for EBSD. It provides patterns of the highest quality and sensitivity with no detector read noise and no distortion for optimal performance. The Clarity™ does not require a phosphor screen or light transfer system. The DeD camera is so sensitive that individual electrons can be detected, giving users unprecedented performance for EBSD pattern collection. It is ideal for analysis of beam sensitive samples and potential strain applications. We recently had a webinar “Direct Electron Detection with Clarity™ – Viewing EBSD Patterns in a New Light” previewing the Clarity™. You can also get a better understanding of the system in the December issue of the Insight newsletter or the .

EBSD pattern from Silicon using the Clarity™ detector.

EBSD pattern from Silicon
using the Clarity™ detector.

All this happened in one year! 2020 looks to be another great year for EDAX with further improvements and product releases to offer the best possible tools for you to solve your materials characterization problems.

Common Mistakes when Presenting EBSD Data

Shawn Wallace, Applications Engineer, EDAX

We all give presentations. We write and review papers. Either way, we have to be critical of our data and how it is presented to others, both numerically and graphically.

With that said, I thought it would be nice to start this year with a couple of quick tips or notes that can help with mistakes I see frequently.

The most common thing I see is poorly documented cleanup routines and partitioning. Between the initial collection and final presentation of the data, a lot of things are done to that data. It needs to be clear what was done so that one can interpret it correctly (or other people can reproduce it). Cleanup routines can change the data in ways that can either be subtle (or not so subtle), but more importantly they could wrongly change your conclusions. The easiest routine to see this on is the grain dilation routine. This routine can turn noisy data into a textured dataset pretty fast (fig. 1).

Figure 1. The initial data was just pure noise. By running it iteratively through the grain dilation routine, you can make both grains and textures.

Luckily for us, OIM Analysis™ keeps track of most of what is done via the cleanup routines and partitioning in the summary window on either the dataset level or the partition level (fig. 2).

Figure 2. A partial screenshot of the dataset level summary window shows cleanup routines completed on the dataset, as well as the parameters used. This makes your processing easily repeatable.

The other common issue is not including the full information needed to interpret a map. I really need to look at 3 things to get the full picture for an EBSD dataset: the IPF map (fig. 3), the Phase Map (fig. 4) and the IPF Legend (fig. 5) of those phases. This is very important because while the colors used are the same, the orientations differ between the different crystal symmetries.

Figure 3. General IPF Map of a geological sample. Many phases are present, but the dataset is not complete without a legend and phase map. The colors mean nothing without knowing both the phase and the IPF legend to use for that phase.

Below is a multiple phase sample with many crystal symmetries. All use Red-Green-Blue as the general color scheme. By just looking at the general IPF map (fig. 3), I can easily get the wrong impression. Without the phase map, I do not know which legend I should be using to understand the orientation of each phase. Without the crystal symmetry specific legend, I do not know how the colors change over the orientation space. I really need all these legends/maps to truly understand what I am looking at. One missing brick and the tower crumbles.

Figure 5. With all the information now presented, I can actually go back and interpret figure 3 using figures 4 and 5 to guide me.

Figure 4. In this multiphase sample, multiple symmetries are present. I need to know which phase a pixel is, to know which legend to use.

 

 

 

 

 

 

 

 

 

 

 

 

 

Being aware of these two simple ideas alone can help you to better present your data to any audience. The fewer the questions about how you got the data, the more time you will have to answer more meaningful questions about what the data actually means!

Old Eyes?

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

I was recently asked to write a “Tips & Tricks” article for the EDAX Insight Newsletter as I had recently done an EDAX Webinar (www.edax.com/news-events/webinars) on Texture Analysis. I decided to follow up on one item I had emphasized in the Webinar. Namely, the need for sampling enough orientations for statistical reliability in characterizing a texture. The important thing to remember is that it is the number of grain orientations as opposed to the number of orientations measured. But that lead to the introduction of the idea of sub-sampling a dataset to calculate textures when the datasets are very large. Unfortunately, there was not enough room to go into the kind of detail I would have liked to so I’ve decided to use our Blog forum to cover some details about sub-sampling that I found interesting

Consider the case where you not only want to characterize the texture of a material but also the grain size or some other microstructural characteristic requiring a relatively fine microstructure relative to the grain size. According to some previous work, to accurately capture the texture you will want to measure approximately 10,000 grains [1] and about 500 pixels per average grain in order to capture the grain size well [2]. This would result in a scan with approximately 5 million datapoints. Instead of calculating the texture using all 5 million data points, you can use a sub-set of the points to speed up the calculation. In our latest release of OIM Analysis, this is not as big of a concern as it once was as the texture calculations have been multithreaded so they are fast even for very large datasets. Nonetheless, since it is very likely that you will want to calculate the grain size, you can use the area weighted average grain orientation for each grain as opposed to using all 5 million individual orientation measurements for some quick texture calculation. Alternatively, a sub-set of the points through random or uniform sampling of the points in the scan area could be used.

Of course, you may wonder how well the sub-sampling works. I have done a little study on a threaded rod from a local hardware store to test these ideas. The material exhibits a (110) fiber texture as can be seen in the Normal Direction IPF map and accompanying (110) pole figure. For these measurements I have simply done a normalized squared difference point-by-point through the Orientation Distribution Function (ODF) which we call the Texture Difference Index (TDI) in the software.


This is a good method because it allows us to compare textures calculated using different methods (e.g. series expansion vs binning). In this study, I have used the general spherical harmonics series expansion with a rank of L = 22 and a Gaussian half-width of  = 0.1°. The dataset has 105,287 points with 92.5% of those having a CI > 0.2 after CI Standardization. I have elected only to use points with CI > 0.2. The results are shown in the following figure.

As the step size is relatively coarse with respect to the grain size, I have experimented with using grains requiring at least two pixels before considering a set of similarly oriented points a grain versus allowing a single pixel to be a grain. This resulted in 9981 grains and 25,437 grains respectively. In both cases, the differences in the textures between these two grain-based sub-sampling approaches with respect to using the full dataset are small with the 1 pixel grain based sub-sampling being slight closer as would be expected. However, the figure above raised two questions for me: (1) what do the TDI numbers mean and (2) why do the random and the uniform sampling grids differ so much, particularly as the number of points in the sub-sampling gets large (i.e. at 25% of the dataset).

TDI
The pole figure for the 1000 random points in the previous figure certainly captures some of the characteristics of the pole figure for the full dataset. Is this reflected in the TDI measurements? My guess is that if I were to calculate the textures at a lesser rank, something like L = 8 then the TDI’s would go down. This is already part of the TDI calculation and so it is an easy thing to examine. For comparison I have chosen to look at four different datasets: (a) all of the data in the dataset above (named “fine”), (b) a dataset from the same material with a coarser step size (“coarse”) containing approximately 150,000 data points, (c) sub-sampling of the original dataset using 1000 randomly sampled datapoints (“fine-1000”) and (d) the “coarse” dataset rotated 90 degrees about the vertical axis in the pole figures (“coarse-rotated”). It is interesting to note that the textures that are similar “by-eye” show a general increase in the TDI as the series expansion rate increases. However, for very dissimilar textures (i.e “coarse” vs “coarse-rotated”) the jump to a large TDI is immediate.

Random vs Uniform Sampling
The differences between the random and uniform sampling were a bit curious so I decided to check the random points to see how they were positioned in the x-y space of the scan. The figure below compares the uniform and random sampling for 4000 datapoints – any more than this is hard to show. Clearly the random sampling is reasonable but does show a bit of clustering and gaps within the scan area. Some of these small differences show up with higher differences in TDI values than I would expect. Clearly, at L = 22 we are picking up quite subtle differences – at least subtle with respect to my personal “by-eye” judgement. It seems to me, that my “by-eye” judgement is biased toward lower rank series expansions.


Of course, another conclusion would be that my eyesight is getting rank with age ☹ I guess that explains my increasingly frequent need to reach for my reading glasses.

References
[1] SI Wright, MM Nowell & JF Bingert (2007) “A comparison of textures measured using X-ray and electron backscatter diffraction”. Metallurgical and Materials Transactions A, 38, 1845-1855
[2] SI Wright (2010) “A Parametric Study of Electron Backscatter Diffraction based Grain Size Measurements”. Practical Metallography, 47, 16-33.

Teaching is learning

Dr. René de Kloe, Applications Specialist, EDAX

Figure 1. Participants of my first EBSD training course in Grenoble in 2001.

Everybody is learning all the time. You start as a child at home and later in school and that never ends. In your professional career you will learn on the job and sometimes you will get the opportunity to get a dedicated training on some aspect of your work. I am fortunate that my job at EDAX involves a bit of this type of training for our customers interested in EBSD. Somehow, I have already found myself teaching for a long time without really aiming for it. Already as a teenager when I worked at a small local television station in The Netherlands I used to teach the technical things related to making television programs like handling cameras, lighting, editing – basically everything just as long as it was out of the spotlight. Then during my geology study, I assisted in teaching students a variety of subjects ranging from palaeontology to physics and geological fieldwork in the Spanish Pyrenees. So, unsurprisingly, shortly after joining EDAX in 2001 when I was supposed to simply participate in an introductory EBSD course (fig 1) taught by Dr. Stuart Wright in Grenoble, France, I quickly found myself explaining things to the other participants instead of just listening.

Teaching about EBSD often begins when I do a presentation or demonstration for someone new to the technique. And the capabilities of EBSD are such that just listing the technical specifications of an EBSD system to a new customer does not do it justice. Later when a system has been installed I meet the customers again for the dedicated training courses and workshops that we organise and participate in all over the world.

Figure 2. EBSD IPF map of Al kitchen foil collected without any additional specimen preparation. The colour-coding illustrates the extreme deformation by rolling.

In such presentations, of course we talk about the basics of the method and the characteristics of the EDAX systems, but then it always moves on to how it can help understand the materials and processes that the customer is working with. There, teaching starts working the other way as well. With every customer visit I learn something more about the physical world around us. Sometimes this is about a fundamental understanding of a physical process that I have never even heard of.

At other times it is about ordinary items that we see or use in our daily lives such as aluminium kitchen foil, glass panes with special coatings, or the structure of biological materials like eggs, bone, or shells. Aluminium foil is a beautiful material that is readily available in most labs and I use it occasionally to show EBSD grain and texture analysis when I do not have a suitable polished sample with me (fig 2) and at some point, a customer explained to me in detail how it was produced in a double layer back to back to get one shiny and one matte side. And that explained why it produces EBSD patterns without any additional preparation. Something new learned again.

Figure 3. IPF map of austenitic steel microstructure prepared by additive manufacturing.

A relatively new development is additive manufacturing or 3D printing where a precursor powdered material is melted into place by a laser to create complex components/shapes as a single piece. This method produces fantastically intricate structures (fig 3) that need to be studied to optimise the processing.

With every new application my mind starts turning to identify specific functions in the software that would be especially relevant to its understanding. In some cases, this then turns into a collaborative effort to produce scientific publications on a wide variety of subjects e.g. on zeolite pore structures (1, fig (4)), poly-GeSi films (2, fig (5)), or directional solidification by biomineralization of mollusc shells (3).

Figure 4. Figure taken from ref.1 showing EBSD analysis of zeolite crystals.

Figure 5. Figure taken from ref.2 showing laser crystallised GeSi layer on substrate.

Such collaborations continuously spark my curiosity and it is because of these kinds of discussions that after 17 years I am still fascinated with the EBSD technique and its applications.

This fascination also shows during the EBSD operator schools that I teach. The teaching materials that I use slowly evolve with time as the systems change, but still the courses are not simply repetitions. Each time customers bring their own materials and experiences that we use to show the applications and discuss best practices. I feel that it is true that you only really learn how to do something when you teach it.

This variation in applications often enables me to fully show the extent of the analytical capabilities in the OIM Analysis™ software and that is something that often gets lost in the years after a system has been installed. I have seen many times that when a new system is installed, the users invest a lot of time and effort in getting familiar with the system in order to get the most out of it. However, with time the staff that has been originally trained on the equipment moves on and new people are introduced to electron microscopy and all that comes with it. The original users then train their successor in the use of the system and inevitably something is lost at this point.

When you are highly familiar with performing your own analysis, you tend to focus on the bits of the software and settings that you need to perform your analysis. The bits that you do not use fade away and are not taught to the new user. This is something that I see regularly during the training course that I teach. Of course, there are the new functions that have been implemented in the software that users have not seen before, but people who have been using the system for years and are very familiar with the general operation always find new ways of doing things and discover new functions that could have helped them with past projects during the training courses. During the latest EBSD course in Germany in September a participant from a site where they have had EBSD for many years remarked that he was going to recommend coming to a course to his colleagues who have been using the system for a long time as he had found that the system could do much more than he had imagined.

You learn something new every day.

1) J Am Chem Soc. 2008 Oct 15;130(41):13516-7. doi: 10.1021/ja8048767. Epub 2008 Sep 19.
2) ECS Journal of Solid State Science and Technology, 1 (6) P263-P268 (2012)
3) Adv Mater. 2018 Sep 21:e1803855. doi: 10.1002/adma.201803855. [Epub ahead of print]

A Little Background on Backgrounds

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

If you have attended an EDAX EBSD training course, you have seen the following slide in the Pattern Indexing lecture. This slide attempts to explain how to collect a background pattern before performing an OIM scan. The slide recommends that the background come from an area containing at least 25 grains.

Those of you who have performed re-indexing of a scan with saved patterns in OIM Analysis 8.1 may have noticed that there is a background pattern for the scan data (as well as one of the partitions). This can be useful if re-indexing a scan where the raw patterns were saved as opposed to background corrected patterns. This background pattern is formed by averaging 500 patterns randomly selected from the saved patterns. 500 is a lot more than the minimum of 25 recommended in the slide from the training lecture.

Recently, I was thinking about these two numbers – is 25 really enough, is 500 overkill? With some of the new tools (Callahan, P.G. and De Graef, M., 2013. Dynamical electron backscatter diffraction patterns. Part I: Pattern simulations. Microscopy and Microanalysis, 19(5), pp.1255-1265.) available for simulating EBSD patterns I realized this might be provide a controlled way to perhaps refine the number of orientations that need to be sampled for a good background. To this end, I created a set of simulated patterns for nickel randomly sampled from orientation space. The set contained 6,656 patterns. If you average all these patterns together you get the pattern at left in the following row of three patterns. The average patterns for 500 and 25 random patterns are also shown. The average pattern for 25 random orientations is not as smooth as I would have assumed but the one with 500 looks quite good.

I decided to take it a bit further and using the average pattern for all 6,656 patterns as a reference I compared the difference (simple intensity differences) between average patterns from n orientations vs. the reference. This gave me the following curve:
From this curve, my intuitive estimate that 25 grains is enough for a good background appears be a bit optimistic., but 500 looks good. There are a few caveats to this, the examples I am showing here are at 480 x 480 pixels which is much more than would be used for typical EBSD scans. In addition, the simulated patterns I used are sharper and have better signal-to-noise ratios than we are able to achieve in experimental patterns at typical exposure times. These effects are likely to lead to more smoothing.

I recently saw Shawn Bradley who is one of the tallest players to have played in the NBA, he is 7’6” (229cm) tall. I recognized him because he was surrounded by a crowd of kids – you can imagine that he really stood out! This reminded me that these results assume a uniform grain size. If you have 499 tiny grains encircling one giant grain, then the background from these 500 grains will not work as a background as it would be dominated by the Shawn Bradley grain!

Aimless Wanderin’ – Need a Map?

Dr. Stuart Wright, Senior Scientist, EDAX

In interacting with Rudy Wenk of the University of California Berkeley to get his take on the word “texture” as it pertains to preferred orientation reminds me of some other terminologies with orientation maps that Rudy helped me with several years ago.

Map reconstructed form EBSD data showing the crystal orientation parallel to the sample surface normal

Joe Michael of Sandia National Lab has commented to me a couple of times his objection to the term “IPF map”. As you may know, the term is commonly used to describe a color map reconstructed from OIM data where the color denotes the crystallographic axis aligned with the sample normal as shown below. Joe points out that the term “orientation map” or “crystal direction map” or something similar would be much more appropriate and he is absolutely right.

The reason behind the name “IPF map”, is that I hi-jacked some of my code for drawing inverse pole figures (IPFs) as a basis to start writing the code to create the color-coded maps. Thus, we started using the term internally (it was TSL at the time – prior to EDAX purchasing TSL) and then it leaked out publicly and the name stuck – my apologies to Joe. We later added the ability to color the microstructure based on the crystal direction aligned with any specified sample direction as shown below.

Orientation maps showing the crystal directions aligned with the normal, rolling and transverse directions at the surface of a rolled aluminum sheet.

The idea for this map was germinated from a paper I saw presented by David Dingley where a continuous color coding schemed was devised by assigning red, green and blue to the three axes of Rodrigues-Frank space: D. J. Dingley, A. Day, and A. Bewick (1991) “Application of Microtexture Determination using EBSD to Non Cubic Crystals”, Textures and Microstructures, 14-18, 91-96. In this case, the microstructure had been digitized and a single orientation measured for each grain using EBSD. Unfortunately, I only have gray scale images of these results.

SEM micrograph of nickel, grain orientations in Rodrigues-Frank space and orientation map based on color Rodrigues vector coloring scheme. Source: Link labeled “Full-Text PDF” at www.hindawi.com/archive/1991/631843/abs/

IPF map of recrystallized grains in grain oriented silicon steel from Y. Inokuti, C. Maeda and Y. Ito (1987) “Computer color mapping of configuration of goss grains after an intermediate annealing in grain oriented silicon steel.” Transactions of the Iron and Steel Institute of Japan 27, 139-144.
Source: Link labeled “Full Text PDF button’ at www.jstage.jst.go.jp/article/isijinternational1966/27/4/27_4_302/_article

We didn’t realize it at the time; but, an approach based on the crystallographic direction had already been done in Japan. In this work, the stereographic unit triangle (i.e. an inverse pole figure) was used in a continues color coding scheme were red is assigned to the <110> direction, blue to <111> and yellow to <100> and then points lying between these three corners of the stereographic triangle are combinations of these three colors. This color coding was used to shade grains in digitized maps of the microstructure according to their orientation. Y. Inokuti, C. Maeda and Y. Ito (1986) “Observation of Generation of Secondary Nuclei in a Grain Oriented Silicon Steel Sheet Illustrated by Computer Color Mapping”, Journal of the Japan Institute of Metals, 50, 874-8. The images published in this paper received awards in 1986 by the Japanese Institute of Metals and TMS.

AVA map and pole figure from a quartz sample from “Gries am Brenner” in the Austrian alps south of Innsbruck. The pole figure is for the c-axis. (B. Sander (1950) Einführung in die Gefügekunde der Geologischen Körper: Zweiter Teil Die Korngefüge. Springer-Vienna)
Source: In the last chapter (Back Matter) in the Table of Contents there is a link labeled “>> Download PDF” at link.springer.com/book/10.1007%2F978-3-7091-7759-4

I thought these were the first colored orientation maps constructed until Rudy later corrected me (not the first, nor certainly the last time). He sent me some examples of mappings of orientation onto a microstructure by “hatching” or coloring a pole figure and then using those patterns or colors to shade the microstructure as traced from micrographs. H.-R. Wenk (1965) “Gefügestudie an Quarzknauern und -lagen der Tessiner Kulmination”, Schweiz. Mineralogische und Petrographische Mitteilungen, 45, 467-515 and even earlier in B. Sander (1950) Einführung in die Gefügekunde Springer Verlag. 402-409 . Sanders entitled this type of mapping and analysis as AVA (Achsenvertilungsanalyse auf Deutsch or Axis Distribution Analysis in English).

Such maps were forerunners to the “IPF maps” of today (you could actually call them “PF maps”) to which we are so familiar with. It turns out our wanderin’s in A Search for Structure (Cyril Stanley Smith, 1991, MIT Press) have actually not been “aimless” at all but have helped us gain real insight into that etymologically challenged world of microstructure.