EDS

EDAX China User Meeting in Guiyang 贵阳用户会流水帐

Dr. Sophie Yan, Applications Engineer China, EDAX

EDAX China User Meeting, Guiyang.

EDAX China User Meeting, Guiyang.

EDAX held a China user meeting in Guiyang, Guizhou province in July 2017. We had a wonderful time with over 100 customers and colleagues. The User Meeting was very interesting; the weather is cool in summer; and the activities after the meeting were great fun.. I have several pictures to show the different moments…
Generally, Guiyang is not very popular with Chinese people. In Shanghai, there are luxuries in Huaihai Road and crowds in Nanjing Road; in Beijing, you find the solemn Tiananmen Square and desolate The Great Wall, but in Guiyang, I just had an impression of a poverty-stricken mountain area. Then I met a friend from Guiyang, she also talked about poverty and the mountain area, but she was much more enthusiastic about the region. She said it was warm in winter and cool in summer; she said the mountain and water were so nice. She was a stylish girl, living an exquisite life; but she always wished she could go back to hometown earlier. From then on, Guiyang became a kind of mystery in my mind.
其实我对贵阳思慕已久。
上海上海,是淮海路的名牌南京路的热闹;北京北京,是天安门的庄严长城的苍凉。贵阳,有什么?大山的贫瘠与封闭?直到当年,我碰到一位朋友,来自贵阳。她也说起大山及贫穷,但是她的话里,那里冬暖夏凉,水暖山温。那位朋友,思想前卫,生活精致,心心念念的,却是早日回家。至此,贵阳,在我心里是颇为神秘的所在。
After so many years, when I arrived in Guiyang, the feeling of mystery and novelty disappeared. The airport looks great and the billboard is modern and impressive. It was no different from other places, except that it’s 10 degrees cooler than Shanghai. I shared this image in ‘wechat’ moments, then got a lot of ’likes’.
一念多年。当踏上这个城市的土地,我所以为的一切,新奇,神秘,通通颠覆。这里的机场不小,广告牌也一派摩登气派。和我去过的地方并无多大不同。除了,比起火炉一般的江浙沪低了十度,发在微信朋友圈,引起一片哀号。看看这一张截图,就拉了多少仇恨。

During the conference our VP Mark Grey came and delivered a corporate introduction. Nan Lin from Singapore and local applications showed new product information: EDS, EBSD, XRF, etc.
开会中……VP Mark过来作公司简介,新加坡的林楠以及国内的应用分别作产品介绍……EDS,EBSD,XRF,嗯,分工明确。

Invited speakers shared their research work in the afternoon. Each one generated lively discussion. The EDAX user meeting is not only an opportunity to show EDAX products, it is also a platform for users’ to communicate with each other and discuss current challenges in microanalysis.
下午各位嘉宾给大家作邀请报告……每个报告都引起了热烈的反应,讨论得不亦乐乎……EDAX的用户会不单是一个产品展示的环节,更是一个用户交流的平台……

Speakers at the China User Meeting 2017

Speakers at the China User Meeting 2017

Imagine the scenery outside. The weather forecast showed 29 degree(Celsius), but it was cool actually. Green trees and a humid atmosphere made the sultry summer go away.
开会中间例行出来拍照,当时天气预报29度,但是风吹得非常凉爽。分明才是初夏的温度,凉风习习的感觉。加上四周绿树葱茏,空气中的润泽气息,盛夏的酷热,早已远离。

 
The hotel located beside Guanshanhu Park, which was gorgeous.
酒店在观山湖公园旁边,风景如画(图片来自百度,笔者拍照无能……)
No one was in this corner of the park. Red flowers were quietly in bloom.
傍晚的公园角落寂寂无人,一丛红花在碎石小径上静静盛开。

We went to Huangguoshu waterfall! The white waterfall poured down. I felt the vapor and steam: it was amazing.
当然这次贵阳之行的精妙处不止于此……还有我最为盼望的——黄果树瀑布!如匹练的白色倾泻直下,瀑布脚下水汽氤氲,在近处感受那赫赫声势,大自然的鬼斧神工,实非人力所能及。
Just behind the hill, the water from the waterfall formed a lake, gentle and quiet.
瀑布积水成湖,湖水温柔静谧。水的另一面。

We also experienced the different culture of the local ethnic minority. Terraced fields, bamboo buildings,songs and dance from local people. Attractive.
我们还顺便见识了少数民族的多样文化。梯田,依山而建的竹楼,以及多姿多彩的歌舞。不虚此行。

Finally, we are looking forward to the next user meeting in China!
流水帐完结处,唯愿年年有今日,岁岁有今朝!

Celebrating the 50th Birthday of Microanalysis

Sia Afshari, Global Marketing Manager, EDAX

The Microscopy & Microanalysis (M&M) Conference is celebrating 50 years of microanalysis at this year’s meeting in St. Louis next week. There is an entire session (A18.3) dedicated to the 50-year anniversary and the historical background of microanalysis from several different perspectives.

My colleague, Dr. Patrick Camus will be presenting the history of EDAX in his presentation, “More than 50 Years of Influence on Microanalysis” at this session and this is a must see for everyone who is at all interested in the historical development and advances in microanalysis!

Looking back at some of the images in the field of microscopy and seeing how far we have come from static spectrum collection to the standardless quantification of complex materials makes me wonder (in a good way!), about the future and especially about the technical possibilities in microanalysis.

Figure 1. Nuclear Diodes EDAX System Interfaced to Cambridge Stereoscan Scanning Electron Microscope – circa 1968

Pat will be describing the evolution of the company from Nuclear Diodes (1962) through EDAX International (1972) and purchase by Philips (1974) to acquisition by Ametek in 2001. Many accomplished microanalysts have been part of the EDAX team along the journey and have contributed enormously to the technical development of microanalysis. The advancements which have been made to date and those which will continue in the future would have not been possible without the dedication and hard work of all these pioneers in this field.

Figure 2. EDAX Element Silicon Drift Detector on a Scanning Electron Microscope – 2017.

At EDAX, which happens to be older than 50 years, I have been honored to meet some of the pioneers of microanalysis. I extend my gratitude to all those whose work has made it possible for us to enjoy the level of sophistication achieved today and we hope to continue their innovative tradition!

Please click here for more information on EDAX at M&M 2017.

Caveat Emptor – Especially with Microanalysis Samples

Matt Nowell – EBSD Product Manager, EDAX

My wife tells me I’m a bit of a hoarder. As we have done our spring cleaning, I’ve found coasters of places I’ve dined around the world, shirts a size (or more) smaller that I haven’t worn in years, and 2 Lego minifigures I bought and forgot to give to the kids. I’ve been forced to admit I didn’t need to keep all this any longer. Of course, as someone who develops and demonstrates EDS and EBSD microanalysis tools, the one thing you can never have too much of is interesting samples. I have drawers full of samples I’ve analyzed, or hope to analyze, and they come in handy when someone wants an interesting example for a customer or presentation.

With that in mind, I’d like to describe my adventures with a new sample I obtained this year. I found a bracelet online that claimed to have 62 elements. To me, that seemed wonderful, and potentially a great sample for EDS and EBSD analysis. I ordered one, and anxiously awaited its delivery.

When it arrived, and I opened it, I immediately became a bit suspicious. For the size and volume of material, it felt very light. I have a set of metal coupons that are all the same size but different alloys and materials, and there is a significant different in feel between different alloys. I guessed it was aluminum, but would use EDS and EBSD to determine the composition.

It was an interesting characterization problem though – potentially it contained 62 elements, but I didn’t know the concentration or spatial distribution of these elements. I started with EDS, and used my Octane Elite EDS detector. Initially I set up the SEM for 20kV analysis, with ≈15kcps output through the detector with ≈ 30% deadtime. Under these conditions, the resolution of the EDS detector was 122.8eV. I imaged a 600µm x 800µm area of the bracelet, and collected EDS spectra for 1, 10, 100, 1000, and 10,000 seconds. The signal to background increases as the square of the time collected, so for each 10X increase, I expected to improve the detection by about a factor of 3.

Figure 1. EDS Spectra collected for 10,000 Live Seconds

Figure 1 shows the EDS spectra collected for 10,000 live seconds. With careful review and analysis, I was able to identify 22 of the possible 62 claimed elements. Aluminum had the largest peak, and had the highest concentration. Of course, I knew I was only sampling the surface, and made no attempt to section into the sample. There was also a strong oxygen peak, which I would attribute to an oxidation layer. Most other detectable elements were present in smaller concentrations. Figures 2 and 3 show an energy range between 7.75eV – 9.00 eV, where the k-line peaks for nickel, zinc, and copper are present, for 10 and 10,000 live seconds of collection. These elements were selected because they were present in low concentrations. At 10 live seconds, these peaks are very noisy but present, and additional collection time significantly improves their distribution shape and counting statistics.

Figure 2. EDS Spectra collected for 10 Live seconds with 15kcsp output

Figure 3. EDS Spectra collected for 10,000 Live Seconds with 15kcsp output

Knowing that better counting improves lower limits of detection, I increased the beam current on the SEM to obtain ≈215kcps output counts, and then collected spectra over the same time intervals.* Figure 4 shows the collection under these conditions after 10,000 live seconds. I should note that while I analyzed the same size area, I did not analyze the exact same area, so it is possible any variations could be due to this approach.

Figure 4. EDS Spectra collected for 10,000 Live Seconds with 215kcps output

At this point, I had a lot of data, but increasing the count rate did not reveal any more elements than were initially detected. To evaluate performance, I quantified each spectra, and focused my analysis on the nickel, zinc, and copper elements. The weight percentage of each of these elements is shown in Figure 5 for each collection time and count rate. Each element has the same color (blue for Nickel, red for Zinc, and black for Copper), the lower count rate lines have a marker, while the higher count rate lines do not.

Figure 5. Weight percentage of selected elements as a function of acquisition time and output count rate

To me, this data was very impressive. Except for the 1 and 10 live second collections at the lower output count rate, the consistency of the data was good, even with concentrations of less than 1 weight percentage. The quantification output does give an error percentage value, and rule-of-thumb acceptance criteria was met after 100 live seconds collection at the lower count rate and 10 live seconds collection at the higher count rate. The fact that I continued to collect data for significantly longer times past this point would suggest that the remaining elements are either not-present, not at the surface where I am analyzing, or are present at concentrations lower than my detection limits.

I also wanted to look at this sample structurally, hoping for an interesting multiphase sample with pretty microstructures I could hang in the hall. I sectioned the sample, and polished a portion for EBSD analysis. The PRIAS + IPF Orientation map is shown in figure 6. I was able to index 99.7% of the collected points with high confidence using the aluminum FCC material file. It has a very large grain structure. I did see a number of smaller Fe precipitates, but I have not examined at higher magnification yet.

Figure 6. PRIAS + IPF Orientation map .

All in all, it didn’t turn out to be the sample I had hoped for, but was good to help think about collecting EDS data for both accuracy and sensitivity. I’ll have to share the sample with other colleagues for WDS and µXRF analysis to see if we can find more of these missing elements.

For more information on quantative analysis with EDS, join our upcoming webinar, ‘Practical Quantitative Analysis – How to optimize the accuracy of your data’. Please click here to register.

My New Lab Partner Part 2 (East Coast Edition)

Jens Rafaelsen, Applications Engineer, EDAX

During a recent trip to our Draper lab in Utah for a training class, I got a first-hand look at Matt’s new lab partner (https://edaxblog.com/2017/02/14/my-new-lab-partner/). I must admit that I am a little envious of his new microscope and how easily you get great looking images (even at low acceleration voltage or high beam current) compared to the systems we have in our Mahwah lab. However, I must also admit that he needed an upgrade a lot more than we did. While his old XL has been very reliable (and still seems to be, even after moving it to another room), it was always a bit of a worry conducting a training class with only one microscope available and one that was at end of service life at that.

Around the time when Matt got his new microscope we also had an addition to our Mahwah lab as seen in the picture below:

OK, it’s definitely not an ARM or a TITAN, it only goes to 120kV, it’s not quite as new and fancy as Matt’s microscope, and the firmware might read 1994 when you hit the ON button, but it’s still good to have a TEM in the building once again. One of the things that’s great about older scientific instruments is that they often include full vacuum and wiring diagrams, schematics, and troubleshooting directions. Not so great: pressure readings in arbitrary numbers… I did some creative plumbing and mounted extra gauges on the line of the microscope gauges so now I know that a pressure reading in the buffer tank of 26 corresponds to roughly 10-1 mbar and that the camera chamber goes down to the mid 10-5 mbar. As an added bonus, several people in the building have been around long enough to have experience with the CM12 both as users and service and have had their memories jogged for how to run and align it. This also spurred the comment: “That’s right, this is why I decided to get out of field service…”.

Having had very limited TEM experience it’s been a bit of a learning curve for me but I think it’s getting there. There’s still a lot to learn when it comes to fine tuning of the instrument, diffraction, and aligning for dark field imaging, but at least I am able to get bright field images at over 500k magnification without spending too much time. And some of the images actually have somewhat decent resolution and recognizable features at that:

Holey carbon at 660.000x magnification

Of course, a lot of what we do at EDAX doesn’t really require great resolution or the newest instruments. While it’s always nice to have pretty pictures to go along with things, the X-rays don’t really care much about your astigmatism or spot size (unless you are trying to map of course). But there’s a significant difference in what you see in your spectra whether your electrons are hitting the sample with 15 kV or 120 kV. There are also very different considerations and limitations between a SEM and a TEM when it comes to actually mounting the detector, designing collimators, and even what materials can be used. With that being said, I hope that with my “new” lab partner we will move things along so that we can show you new applications, software, and hardware specifically for the TEM in the near future.

Considerations for your New Year’s Resolutions from Dr. Pat

Dr. Patrick Camus, Director of Research and Innovation, EDAX

The beginning of the new calendar year is a time to reflect and evaluate important items in your life. At work, it might also be a time to evaluate the age and capabilities of the technical equipment in your lab. If you are a lucky employee, you may work in a newly refurbished lab where most of your equipment is less than 3 years old. If you are such a fortunate worker, the other colleagues in the field will be envious. They usually have equipment that is much more than 5 years old, some of it possibly dating from the last century!

Old Jalopy circa 1970 EDAX windowless Si(Li) detector circa early 70’s

In my case, at home my phone is 3 years old and my 3 vehicles are 18, 16, and 3 years old. We are definitely evaluating the household budget this year to upgrade the oldest automobile. We need to decide what are the highest priority items and which are not so important for our usage. It’s often important to sort through the different features offered and decide what’s most relevant … whether that’s at home or in the lab.

Octane Elite Silicon Drift Detector 2017 Dr. Pat’s Possible New Vehicle 2017

If your lab equipment is older than your vehicles, you need to determine whether the latest generation of equipment will improve either your throughput or the quality of your work. The latest generations of EDAX equipment can enormously speed up throughput and the improve quality of your analysis over that of previous generations – it’s just a matter of convincing your boss that this has value for the company. There is no time like the present for you to gather your arguments into a proposal to get the budget for the new generation of equipment that will benefit both you and the company.
Best of luck in the new year!

Adding a New Dimension to Analysis

Dr. Oleg Lourie, Regional Manager A/P, EDAX

With every dimension, we add to the volume of data, we believe that we add a new perspective in our understanding and interpretation of the data. In microanalysis adding space or time dimensionality has led to the development of 3D compositional tomography and dynamic or in situ compositional experiments. 3D compositional tomography or 3D EDS is developing rapidly and getting wider acceptance, although it still presents challenges such as the photon absorption, associated with sample thickness and time consuming acquisition process, which requires a high level of stability, especially for TEM microscopes. After setting up a multi hour experiment in a TEM to gain a 3D compositional EDS map, one may wonder Is there any shortcut to getting a ‘quick’ glimpse into 3-dimensional elemental distribution? The good news is that there is one and compared to tilt series tomography, it can be a ‘snapshot’ type of the 3D EDS map.

3D distribution of Nd in steel.

3D distribution of Nd in steel.

To enable such 3D EDS mapping on the conceptual level we would need at least two identical 2D TEM EDS maps acquired with photons having different energy – so you can slide along the energy axis (adding a new dimension?) and use photon absorption as a natural yardstick to probe the element distribution along the X-ray path. Since the characteristic X-rays have discrete energies (K, L, M lines), it might work if you subtract the K line map from the L line or M line map to see an element distribution based on different absorption between K and L or M line maps. Ideally, one of EDS maps should be acquired with high energy X-rays, such as K lines for high atomic number elements, and another with low energy X-rays where the absorption has a significant effect, such as for example M lines. Indeed, in the case of elements with a high atomic number, the energies for K lines area ranged in tens of keV having virtually 0 absorption even in a thick TEM sample.

So, it all looks quite promising except for one important detail – current SDDs have the absorption efficiency for high energy photons close to actual 0. Even if you made your SDD sensor as large 150 mm2 it would still be 0. Increasing it to 200 mm2 would keep it steady close to 0. So, having a large silicon sensor for EDS does not seem to matter, what matters is the absorption properties of the sensor material. Here we add a material selection dimension to generate a new perspective for 3D EDS. And indeed, when we selected a CdTe EDS sensor we would able to acquire X-rays with the energies up to 100 keV or more.

To summarize, using a CdTe sensor will open an opportunity for a ‘snapshot’ 3D EDS technique, which can add more insight about elemental volume distribution, sample topography and will not be limited by a sample thickness. It would clearly be more practical for elements with high atomic numbers. Although it might be utilized for a wide yet selected range of samples, this concept could be a complementary and fast (!) alternative to 3D EDS tomography.

Help!

Dr. René de Kloe, Applications Specialist EDS, EBSD, EDAX

The job of an applications engineer is to help people. Help sales people to explain to customers what a system can do. Help customers to get the most out of their system and help them to understand their materials better. Help the marketing group with nice examples. And help the development team to devise applications that have not been tried before.

One thing you need in order to be able to help is knowing the EDAX analysis systems inside-out. But the other thing you need is samples. Lots of samples. Every function or analysis tool in the software, regardless if it is for EDS, EBSD, WDS, or XRF is best shown with a specific material or combination of elements or phases. Some of these, like chemical standards with known composition, you have to make or perhaps buy. Others you have to collect yourselves, but from where? A great source for new materials are our customers. People often send me materials to evaluate our systems, or for help on how to best analyse their samples. When I then get permission to keep a bit of the material it goes directly into my collection, together with valuable information on the current analysis requirements in different scientific disciplines.

Eight phase FeSi alloy Brass with NiMnSi particles 

This goes a long way in getting good example materials, but I always keep my eyes open for new interesting things. When I see a metal strip in an anti-theft label in clothing I keep it (after buying the item of course), when a droplet of lead-tin solder falls on the floor, I stick it in the microscope to see if it looks good. I also scrutinize things that get thrown away, ranging from the lid of a vegetable jar to a damaged bellows of an EBSD system. That has given me beautiful cast aluminium samples for EDS mapping, multiphase brass alloys for ChI-Scan EDS-EBSD analysis, and recently an unexpected copper-plated zinc-aluminium-silicon alloy for EBSD phase identification from a broken belt buckle.

Grain structure of a staple Grain structure of a key ring 

Luckily I don’t always have to go dumpster diving to get my example materials. One of my favorite sample mounts contains different types of heavily deformed ferrite, duplex stainless steel, and also martensitic structures. That sounds perhaps complicated, but on the outside the same sample just looks like staples, a paperclip, a key ring, and a screw.

The screw, for example, I polished after doing some DIY work at home and because a certain type of screw kept breaking off when I tightened it, I wanted to take a close look why that happened. It turned out that there were lots of small cracks along the thread, which then also lined up with trails of carbides further inside the screw. That turned out to be a really bad combination and when you tighten the screw, the cracks propagate, connect with the carbide trails and the screw head snaps off. The replacement screws that I used instead had a much finer structure without any cracks and that is what is still holding things together in the house. This shows how microstructures literally shape our daily life. And it also provides a beautiful example to help illustrate the importance of microstructural characterization to new EBSD users.

Weak screw Strong screw

The huge variation in materials and microstructures makes the collection of demonstration samples the most important tool for an application scientist and from this place I hereby want to thank all people who have given me a piece of some material during my years at EDAX to use to help others.

By the way, I would appreciate it very much if the person who briefly “borrowed” my marble sample last year gives it back soon …