Month: September 2016

Help!

Dr. René de Kloe, Applications Specialist EDS, EBSD, EDAX

The job of an applications engineer is to help people. Help sales people to explain to customers what a system can do. Help customers to get the most out of their system and help them to understand their materials better. Help the marketing group with nice examples. And help the development team to devise applications that have not been tried before.

One thing you need in order to be able to help is knowing the EDAX analysis systems inside-out. But the other thing you need is samples. Lots of samples. Every function or analysis tool in the software, regardless if it is for EDS, EBSD, WDS, or XRF is best shown with a specific material or combination of elements or phases. Some of these, like chemical standards with known composition, you have to make or perhaps buy. Others you have to collect yourselves, but from where? A great source for new materials are our customers. People often send me materials to evaluate our systems, or for help on how to best analyse their samples. When I then get permission to keep a bit of the material it goes directly into my collection, together with valuable information on the current analysis requirements in different scientific disciplines.

Eight phase FeSi alloy Brass with NiMnSi particles 

This goes a long way in getting good example materials, but I always keep my eyes open for new interesting things. When I see a metal strip in an anti-theft label in clothing I keep it (after buying the item of course), when a droplet of lead-tin solder falls on the floor, I stick it in the microscope to see if it looks good. I also scrutinize things that get thrown away, ranging from the lid of a vegetable jar to a damaged bellows of an EBSD system. That has given me beautiful cast aluminium samples for EDS mapping, multiphase brass alloys for ChI-Scan EDS-EBSD analysis, and recently an unexpected copper-plated zinc-aluminium-silicon alloy for EBSD phase identification from a broken belt buckle.

Grain structure of a staple Grain structure of a key ring 

Luckily I don’t always have to go dumpster diving to get my example materials. One of my favorite sample mounts contains different types of heavily deformed ferrite, duplex stainless steel, and also martensitic structures. That sounds perhaps complicated, but on the outside the same sample just looks like staples, a paperclip, a key ring, and a screw.

The screw, for example, I polished after doing some DIY work at home and because a certain type of screw kept breaking off when I tightened it, I wanted to take a close look why that happened. It turned out that there were lots of small cracks along the thread, which then also lined up with trails of carbides further inside the screw. That turned out to be a really bad combination and when you tighten the screw, the cracks propagate, connect with the carbide trails and the screw head snaps off. The replacement screws that I used instead had a much finer structure without any cracks and that is what is still holding things together in the house. This shows how microstructures literally shape our daily life. And it also provides a beautiful example to help illustrate the importance of microstructural characterization to new EBSD users.

Weak screw Strong screw

The huge variation in materials and microstructures makes the collection of demonstration samples the most important tool for an application scientist and from this place I hereby want to thank all people who have given me a piece of some material during my years at EDAX to use to help others.

By the way, I would appreciate it very much if the person who briefly “borrowed” my marble sample last year gives it back soon …

Don’t Beam Me Up Yet!

Sia Afshari, Global Marketing Manager, EDAX

This September is the 50th anniversary of the airing the Star Trek series and if you live around New York City, where this year’s convention is being held, you cannot help running into some of the characters walking around in the Star Fleet uniforms or some alien costumes.

The Star Trek series left its mark on the psyche of many especially those who grew up in that era. Many inventions from the Motorola flip phone, tablets, flat screens, hypospray, stun guns, universal translator, all the way to the concept of a retractor beam that is being used as an optical tweezer to trap and remove bacteria by a focused laser beam have been inspired or attributed to this series.

The most intriguing device in the series was the Tricorder concept. It performed medical, biological, geological, physical, and chemical analyses along with detecting spatial anomalies and alien life forms all in one handheld device!

Mr. Spock used his Tricorder to deliver results with an unquestionable degree of accuracy and confidence level that covered analytical capabilities of the following techniques in one package:
IR, entire photon spectrum detection, colorimetry, pressure sensor, humidity gauge, ultrasonic, particle analyses (e-, e+, n, p, ν, HP), XRF, XRD, ICP, AA, HPLC, medical X-rays, MRI, CAT-scan, PET-scan, Electron Microscopy, EDS, EBSD, Raman, to name a few.

And, Tricorder did them all apparently remotely, without any interaction with its subject matter that as we know is the fundamental rule of a measurement.

As has been reported in the media this week, some of the Tricorder functionalities have come to fruition. NASA’s handheld device called LOCAD, measures microorganisms such as E. coli, fungi and salmonella onboard the International Space Station. Two handheld medical devices are on their way to help doctors examine blood flow and check for cancer, diabetes or bacterial infection. Loughborough University in England announced a photo-plethysmography technology in a handheld device that can monitor the heart function and at Harvard Medical School a small device that utilizes a similar technology as MRI that can non-invasively inspect the body. China’s version of the Tricorder health monitor is reported to have cleared FDA approval for the US market!

Regardless of the validity of the Star Trek inspired inventions as being real or nostalgic, one cannot deny the everlasting impact that the series has had on the imaginations of those who saw the achievable possibilities through science and technology in the future. At least it allowed our imaginations to go wild for that one hour.

In insomniac moments, besides the whereabouts of the Orion planet one may wonder, is there a signature force for matter that has not been discovered yet that can be used for the design of a true Tricorder? Until that time, focusing on EDS miniaturization for the next generation portable electron microscope is on my mind with the hope that I will not be beamed up until the realization of the concept! You hear that Scotty?

Browsing for the Trekkies:
http://www.tricorderproject.org/tricorder-mark2.html
http://www.nature.com/nphoton/journal/v6/n2/full/nphoton.2011.322.html
https://spie.org/membership/spie-professional-magazine/spie-professional-archives-and-special-content/2016_january_archive/the-photonics-of-star-trek?WT.mc_id=ZTWZ

China’s Version Of A ‘Star Trek’ Tricorder Has Just Been Approved By The FDA


http://spectrum.ieee.org/biomedical/diagnostics/the-race-to-build-a-reallife-version-of-the-star-trek-tricorder

Metals, Minerals and Gunshot Residue

Dr. Jens Rafaelsen, Applications Engineer EDAX

During a recent visit to a customer facility I was asked what kind of samples, and applications I typically see. It would seem that this would be a pretty easy question to answer but I struggled to narrow it down to anything “typical”. Over the past three weeks I have spent a couple of days each week at customer facilities and I think a brief description of each of them will explain why I had a hard time answering the question.

The first facility I went to was a university in the process of qualifying an integrated EDS/EBSD system on a combined focused ion beam (FIB) and scanning electron microscope (SEM). A system like this allows one to remove material layer by layer and reconstruct a full 3D model of the sample. The dataset in Figure 1 illustrates why this information can be crucial when calculating material properties based on the grain structure from an EBSD scan. If one looks at the image on the left in the figure, it seems obvious that there are a few large grains in the sample with the area between them filled by smaller grains. However, the reconstructed grain on the right shows that several of these smaller “grains” seen in the single slice are actually interconnected and form a very large grain that stretches outside the probed volume.

Figure 1: Single slice EBSD map (left) and single reconstructed grain from 3D slice set (right).

While we spent a good amount of time documenting exactly what kind of speed, signal-to-noise, resolution and sensitivity we could get out of the system, one of the customer’s goals was to measure strain to use as a basis for material modelling. We also discussed a potential collaboration since our EBSD applications engineer, Shawn Wallace, has access to meteorite samples through his previous position at the American Museum of Natural History in New York and a 3D measurement of the grains in a meteorite could make a very compelling study.

Next up was a government agency where the user’s primary interest was in mineral samples but also slag and biological materials retained in mineral matrices. Besides the SEM with EDS they had a microprobe in the next room and they would often investigate the samples in the SEM first before going to the microprobe for detailed analysis (when and if this is required is a different discussion, I would recommend Dale Newbury and Nicholas Ritchie’s article for more details: J Mater Sci (2015) 50:493–518 DOI 10.1007/s10853-014-8685-2).

A typical workflow would be to map out an area of the sample and identify the different phases present to calculate the area fraction and total composition. Since the users of the facility work with minerals all the time, they could easily identify the different parts of the sample by looking at the spectra and quantification numbers, but I have a physics background and will readily admit that I would be hard pressed to tell the difference between bustamite and olivine without the help of Google or a reference book. However, this specific system had the spectrum matching option, which eliminates a lot of the digging in books and finding the right composition. The workflow is illustrated in Figure 2, where one starts by collecting a SEM image of the area of interest and, when the EDS map is subsequently collected, the software will automatically identify areas with similar composition and assign colors accordingly. The next step would then be to extract the spectrum from one area and match it up against a database of spectra. As we can see in the spectrum of Figure 2, the red phase of the EDS map corresponds to a obsidian matrix with slightly elevated Na, Al, and Ca contributions relative to the standard.

Figure 2: Backscatter electron image (top left) and corresponding phase map (top right) showing different compositions in the sample. The bottom spectrum corresponds to the red phase and has an obsidian spectrum overlaid.

The last facility I visited was a forensic lab, where they had purchased an EDS system primarily for gunshot residue (GSR) detection. The samples are usually standard 12.7 mm round aluminum stubs with carbon tabs. The sticky carbon tabs are used to collect a sample from the hands of a suspect, carbon coated and then loaded into the SEM. The challenge is now to locate particles that are consistent with gunshot residue amongst all the other stuff there might be on the sample. The criteria are that the particle has to contain antimony, barium and lead, at least for traditional gunpowder. Lead free gunpowder is available but it is significantly more expensive and when asking how often it is seen in the labs, I was told that apparently the criminal element is price conscious and not particularly environmentally friendly!

The big challenge with GSR is that the software has to search through the entire stub, separate carbon tape from particles down to less than 1 micron, and then investigate whether a particle is consistent with GSR based on the composition. The workflow is illustrated in Figure 3 and is done by collecting high resolution images, looking for particles based on greyscale value in the image, collecting a spectrum from each particle and then classifying the particle based on composition. Once the data is collected, the user can go in and review the total number of particles and specifically look for GSR particles, relocate them on the sample, and collect high resolution images and spectra for documentation in a potential trial.

Figure 3: Overview showing the fields collected from the full sample stub (top left), zoomed image corresponding to the red square in the overview image (top right) and gunshot residue particle from the red square in the zoomed image (bottom).

Three weeks, three very different applications and a very long answer to the question of what kind of samples and applications I typically see. Each of these three applications is typical in its own way although they have little in common. This brings us to the bottom line: most of the samples and applications we come by might be based in the same technique but often the specifics are unique and I guess the uniqueness is really what is typical.