Applications

Seeing is Believing?

Dr. René de Kloe, Applications Specialist, EDAX

A few weeks ago, I participated in a joint SEM – in-situ analysis workshop in Fuveau, France with Tescan electron microscopes and Newtec (supplier of the heating-tensile stage). One of the activities during this workshop was to perform a live in-situ tensile experiment with simultaneous EBSD data collection to illustrate the capabilities of all the systems involved. In-situ measurements are a great way to track material changes during the course of an experiment, but of course in order to be able to show what happens during such an example deformation experiment you need a suitable sample. For the workshop we decided to use a “simple” 304L austenitic stainless-steel material (figure 1) that would nicely show the effects of the stretching.

Figure 1. Laser cut 304L stainless steel tensile test specimen provided by Newtec.

I received several samples a few weeks before the meeting in order to verify the surface quality for the EBSD measurements. And that is where the trouble started …

I was hoping to get a recrystallized microstructure with large grains and clear twin lamellae such that any deformation structures that would develop would be clearly visible. What I got was a sample that appeared heavily deformed even after careful polishing (figure 2).

Figure 2. BSE image after initial mechanical polishing.

This was worrying as the existing deformation structures could obscure the results from the in-situ stretching. Also, I was not entirely sure that this structure was really showing the true microstructure of the austenitic sample as it showed a clear vertical alignment that extended over grain boundaries.
And this is where I contacted long-time EDAX EBSD user Katja Angenendt at the MPIE in Düsseldorf for advice. Katja works in the Department of Microstructure Physics and Alloy Design and has extensive experience in preparing many different metals and alloys for EBSD analysis. From the images that I sent, Katja agreed that the visible structure was most likely introduced by the grinding and polishing that I did and she made some suggestions to remove this damaged layer. Armed with that knowledge and new hope I started fresh and polished the samples once more. And I had some success! Now there were grains visible without internal deformation and some nice clean twin lamellae (figure 3). But not everywhere. I still had lots of areas with a deformed structure and whatever I tried I could not get rid of those.

Figure 3. BSE image after optimized mechanical polishing.

Back to Katja. When I discussed my remaining polishing problems she helpfully proposed to give it a try herself using a combination of mechanical polishing and chemical etching. But even after several polishing attempts starting from scratch and deliberately introducing scratches to verify that enough material was removed we could not completely get rid of the deformed areas. Now we slowly started to accept that this deformation was perhaps a true part of the microstructure. But how could that be if this is supposed to be a recrystallised austenitic 304L stainless steel?

Table 1. 304/304L stainless steel composition.

Let’s take a look at the composition. In table 1 a typical composition of 304 stainless steel is given. The spectrum below (figure 4) shows the composition of my samples.

Figure 4. EDS spectrum with quantification results collected with an Octane Elite Plus detector.

All elements are in the expected range except for Ni which is a bit low and that could bring the composition right at the edge of the austenite stability field. So perhaps the deformed areas are not austenite, but ferrite or martensite? This is quickly verified with an EBSD map and indeed the phase map below confirms the presence of a bcc phase (figure 5).

Figure 5. EBSD map results of the sample before the tensile test, IQ, IPF, and phase maps.

Having this composition right at the edge of the austenite stability field actually added some interesting additional information to the tensile tests during the workshop. Because if the internal deformation in the austenite grains got high enough, we might just trigger a phase transformation to ferrite (or martensite) with ongoing deformation.

Figure 6. Phase maps (upper row) and Grain Reference Orientation Deviation (GROD) maps (lower row) for a sequence of maps collected during the tensile test.

And that is exactly what we have observed (figure 6). At the start of the experiments the ferrite fraction in the analysis field is 7.8% and with increasing deformation the ferrite fraction goes up to 11.9% at 14% strain.

So, after a tough start the 304L stainless steel samples made the measurements collected during the workshop even more interesting by adding a phase transformation to the deformation. If you are regularly working with these alloys this is probably not unexpected behavior. But if you are working with many different materials you have to be aware that different types of specimen treatment, either during preparation or during experimentation, may have a large influence on your characterization results. Always be careful that you do not only see what you believe, but ensure that you can believe what you see.

Finally I want to thank the people of Tescan and Newtec for their assistance in the data collection during the workshop in Fuveau and especially a big thank you to Katja Angenendt at the Max Planck Institute for Iron Research in Düsseldorf for helpful discussions and help in preparing the sample.

It came from outer space!

Dr. Jens Rafaelsen, Applications Engineer, EDAX

One of the interesting aspects of being in applications is the wide variety of interesting samples that you come across and this one came up when I was looking for a sample for an upcoming webinar, where I needed some ‘pretty’ maps. Our US EBSD applications engineer Shawn Wallace was previously at The Department of Earth and Planetary Sciences at the American Museum of Natural History in New York and consequently he knows quite a bit about space rocks. He handed me a thin section of a meteorite labeled NWA 10296 (more information at https://www.lpi.usra.edu/meteor/metbull.php?code=62421) and it did not disappoint.

There were a lot of interesting features in the sample, but I ended up concentrating on one of the large chondrules shown below.

Figure 1. BSE image

The primary composition of the sample is olivine (magnesium iron silicate) and the maps below show a high concentration of the Mg internal to the chondrule with an outer perimeter low in Mg and Si. The iron within the chondrule is forming particulates with low content of O and some veins of Al is also seen while the outer perimeter is an iron oxide.

Figure 2. Mg, Si and O maps (left to right).

My astronomy classes are long behind me and I can’t claim to be able to extract deep insight as to the formation and origin of this meteor but regardless, there’s something fascinating about looking at some of the early matter of the universe. As I heard Emma Bullock phrase it at the Lehigh Microscopy School, “It might just be an old rock, but it’s an old rock from outer space!”.

Figure 3. Fe (left) and Al (right) maps.

The upcoming webinar is less about space rocks and more about mapping and data representation so if this has your interest, please join us April 11 2018. Click here to register . Alternatively you can always find past webinars on our homepage https://www.edax.com/news-events/webinars

Orbis XRF Analysis of Ceramic Monoliths

Dr. Bruce Scruggs, Product Manager XRF, EDAX

Over the last several months, I’ve had a couple of opportunities to analyze a ceramic monolith. For me, this was interesting because I’ve never analyzed one of these and they have been around for a long time. Ceramic monoliths have been used for decades to support metal catalysts, providing a large surface area for reactants to interact with the catalyst. One of the most common uses is found in the automotive catalytic converter. The car’s engine exhaust passes through the catalytic converter changing environmentally polluting gases (e.g. NOx, CO and residual hydrocarbons) into more innocuous ones. (Well, they used to be more innocuous anyway until some clever person decided that CO2 emissions were problematic as well. But, I digress.) Some quick literature reading suggests there is a renewed interest in these for other areas of application besides automotive emission control.

Ceramic monolith with hexagonal channels.

Ceramic monoliths can be made from a variety of ceramics or minerals depending on the application. While it’s true in some cases that the ceramic material is inactive, there are reactions where the ceramic substrate influences the catalytic reaction. Hence, material selection is important. Application of the catalytic metals onto the monolith is another critical step which influences the overall performance of the catalyst. In one typical application process, the untreated monolith is dipped into a liquid slurry of catalytic precursors and then calcined to activate the catalyst.

Ceramic monolith with square channels assembled in an external housing.

The initial goal for Orbis micro-XRF analysis was to analyze the metal distribution within the channels of the monolith. The monoliths were cross-sectioned to expose the interior of a plane of channels and the starting question was to look at the distribution of applied metals along the length of the channels. This is easy enough to do and we can clearly see distributions as we measure from the channel entrance to the center of the channel. It’s what you would expect when dipping a narrow tube in a slurry. But, we could also see distributions across the width of the channel as well. It’s not something I immediately thought about, but it makes sense as the slurry pools in the corner of the channels where two channel walls meet. As we discussed the results we had so far, the question of quantification came up. (Questions about quantification always come up!) As we discussed quantification methodologies, I was measuring at different points within a single channel and noticed that light element signals from the substrate (e.g. MgK or AlK) were sometimes present in the spectrum and sometimes not. This was a surprising result as the belief was that the catalytic wash coat was thick enough to completely absorb these signals. So, we also learned that mass coverage of the catalyst treatment was not as heavy as expected and this also provided some valuable insight into how to go about quantifying the catalytic distributions within the monolith.

If the Orbis micro-XRF analysis can provide data on how well the catalyst is distributed throughout the monolith channel, then this could potentially enable improvements in application techniques, which in turn may lead to dramatic improvements in catalyst efficiency. Overall, I thought that wasn’t bad for a couple of hours of instrument time!

Water, Sand and Salt, and Why We Care About Compounds

Tara Nylese, Global Applications Manager, EDAX

Somewhere around the age of five years old, many of us learn that another way to identify water is by the molecular name, H2O. This usually leads to more questions like: ‘What is H?’, ‘What is O?’, ‘How does that make water?’, ‘Why should I care?’. Over the years, we grow into more advanced chemistry students exploring topics like compound formulas, and we learn that the world we live in is made up of complex associations of combined atoms. A chemical compound is a substance that is composed of two or more chemical elements. The reason that we should care about compounds is that an element such as Oxygen (O) can be very different if it is associated with Hydrogen into H2O to make water, or as SiO2, which is Silicon Dioxide that makes up sand on a beach, or as Fe2O3, which is ferric oxide, loosely known as rust on steel. Therefore, as microanalysts, we should pay close attention to compounds because the elements alone do not always tell us the complete nature of the material we’re analyzing.

Once we grow into an “expert scientist,”* we become deeply entrenched in the details of microanalysis, and we often forget to take a step back to see the big picture. For example, as an EDS analyst, I look at the spectrum below and I think “what a nice sodium peak” or “hmm, am I picking up Al due to scatter at variable pressure?” But unless I’m using it for an introduction to a microscopy and microanalysis student lecture I don’t often simply call it what it is, and that is NaCl, or salt.

Next, we look at the electron image at very low mag and that gives us a better contextual understanding that it is a grain of salt.

When we look back at the spectrum again with a big picture view, we recognize that the main elements present in the spectrum are Na and Cl, and that they make up the compound NaCl, or salt.

In follow up to my recent webinar, I received a lot of questions asking “What are CompoMaps?” and “How can I use CompoMaps?” I was glad to see so much interest in such a valuable routine, and I do hope that users of every level can use this “Compound” view to understand their materials more deeply. To answer the first question, “CompoMaps” is a sophisticated software routine that creates a display of the elemental composition of each pixel. That is, the intensity of the pixel display color is a direct representation of the peak intensity of an element. It is helpful when there is a trace amount of an element, because the routine separates the peak from the background, removing the noise and intensifying the signal. It is perhaps most useful for separating element peaks where there is ambiguity whether there is one element, or another. In the example shown below, I was collecting this data when I happened to get a chance to web connect with an earth sciences professor. After he saw the before and after, he commented that the “after” made much more sense because those two elements would not likely be in combination together in any mineral.

The results here show that Phosphorus in green and Zirconium in purple are definitely located in two different phases.

Before CompoMaps:
After CompoMaps:
Superimposed into one image:
What we didn’t see in the webinar was the Oxygen map, shown here for the first time:
The display shows both with (right) and without (left) the Phosphorus and Zirconium superimposed, and this gives us a better understanding about the compound, since Oxygen is present with these elements. After full investigation of all element maps, we find that the two phases are Ca5(PO4)3F, or fluorapatite and ZrSiO4, or Zircon.

Finally, the answer to the question, “How can I use CompoMaps?”, is easy. This is a routine that EDAX has had in all of our software packages from Genesis to TEAM™ (as Net Maps) and now in APEX™. The routine has been optimized for APEX™ with 64-bit architecture and advanced processing capability, along with an easy to use workflow for results in live-time. So, give it a try and see what you can find!

*My personal opinion is that we should never let ourselves call ourselves experts, lest we forget that there is always something new to learn.

Seeing the World a Little Differently.

Jonathan McMenamin, Marketing Communications Specialist, EDAX

When I started at EDAX five years ago, I knew very little about materials analysis. My education was in Management Information Systems and Computer Science and my work experience came from spending eight years in the Sports Information department at Rowan University. Little by little, I have learned more about the various analysis techniques and feel comfortable enough to write this blog.

One of the first things that caught my eye at EDAX was a series of maps generated from Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Diffraction (EBSD) analysis. The vibrant colors and patterns are very beautiful and almost look like art. Lately, I have noticed objects in everyday life that remind me of these maps.

This past July, my wife and I and our friend took a trip to Ireland. We visited Slieve League in county Donegal, one of the highest sea cliffs in Europe (1,998 feet from the highest point). We decided to hike up the cliffs for a bit and on our way up the rocky pathway on this rainy, foggy day, I came across a large rock that grabbed my attention. It was covered in a pattern that reminded me of an EBSD map showing grain boundaries. I quickly snapped a few photos (below) to show to our EBSD product manager, Matt Nowell when I returned.

Photos of a rock taken at Slieve League in Donegal, Ireland.

A few weeks later, I was at a restaurant in the St. Louis Lambert International Airport having dinner with a few of my coworkers following a successful Microscopy & Microanalysis (M&M) show. While we were waiting for the waitress to return with our food, I looked up at the light hanging over the table next to ours and noticed that it resembled an EBSD pattern. I found another example of a beautiful glass piece when I was decorating my Christmas tree with my wife a few weeks ago. My wife’s grandmother and aunt give her gorgeous hand-blown glass ornaments from Cape Cod every year. As I was hanging one on the tree, I took a photo and explained to her that it looked like the maps we produce at work.

Light in a restaurant at the St. Louis Lambert International airport. One of my family’s hand-blown glass Christmas ornaments.

Ever since I was little, I have had a fascination with the ocean and sharks in particular. One of my favorite species is the Rincodon typus, more commonly known as a whale shark. It is not only the largest living nonmammalian vertebrate, but the whale shark has a very particular pattern of pale yellow spots and stripes on its skin. When I was putting together the EDAX Interactive Periodic Table of Elements (http://www.edax.com/resources/interactive-periodic-table), I came across a map of nickel nanopillars on indium at 3 kV demonstrating low kV microanalysis, and I immediately though it resembled a whale shark.

Rincodon typus, commonly known as a whale shark. Low kV microanalysis: nickel nanopillars on indium at 3 kV.

My final example comes from one of my favorite television shows, The Curse of Oak Island on the History Channel. The show follows a group of men that are in search of treasure that is supposedly buried on a small island off the coast of Nova Scotia, Canada. Several theories exist as to what the treasure is exactly, ranging from Knights Templar hiding sacred religious relics to pirates burying gold and jewels. The group has uncovered many clues and they have found various interesting items including ancient coins, bones from the 1600s, and pieces of wood, ceramic, and paper. On an episode in the current season (season 5), the group discovered a rose-headed spike while metal detecting near the coast line. If I had watched this prior to working at EDAX, I probably wouldn’t have thought anything about it. However, now that I know much more about microanalysis, I immediately thought to myself that they should use EDS analysis to find out what elements the metal was comprised of, to possibly date it based on what materials were used during that period for creating spikes. As it turns out, that is exactly what they did. The team found out that the spike was comprised of 90% iron and 10% carbon with no traces of manganese or sulfur. This showed that it was pre-1840s when manganese was used in metal work and that it was smelted with charcoal before the use of fossil fuels in the 1700s. All pointing to the fact that people were on Oak Island hundreds of years ago.

Rose-headed spike.

The world of microanalysis is extremely interesting and present all around us, you just have to keep your eyes open to see where it pops up in your daily life.

EBSD and the Real World

Shawn Wallace, Applications Specialist, EDAX

One of the powers of EBSD is showing how microstructures are created by the processing of a material and how these microstructures can change the material properties of a sample. Explaining this connection to novice users or potential customers can be difficult. Luckily for me, my sidewalk has given me a perfect example.

It is made up of oriented bricks. Some are placed square side up. Some are placed rectangular side up. But look at the color? Why are some bricks wet while others are dry? The square sides tend to be dry, rectangular still wet.

Now let’s start building up a case as to why this happens.

The first step is understanding how these bricks are made and what they are made of. You take clay, you slap it into a mold. You press the rectangular side to compress it to fill the mold. Fire it and tada, you have a brick. A lot is going on in these steps that you can’t see with the naked eye.

The main thing is that the squeezing step is really having a profound effect on the brick. You are taking randomly oriented platy minerals (Figure 1) and giving them a preferred orientation by squeezing them (Figure 2). It is like a house of cards that has fallen down. You now have grains lying down. Water can’t break through the new “sheets”, but turn the brick on its side and you have pathways to drain the water.

Figure 1. Clay minerals in bricks are often platy in shape. Without any outside forces, the grains are randomly orientated.

FIgure 2. By compressing the material to form a brick shape, the grains are laid flat relative to each other. This is much like EBSD samples with a texture.

This is what you are seeing here. The square bricks have clays that are oriented to wick the water deeper in to the brick, while on the rectangular faces, the water has nowhere to go (Figure 3). Square bricks wick away and are dry, while rectangular faces are still wet.

Figure 3. After the brick is pressed, there are no connecting paths for the water to flow into the material from the top. But from the side, there are channels leading into the bricks. This is what allows the water to wick inside the brick from the square side, but not the rectangular side.

On a high level, this is what EBSD is all about. You are seeing how these processes forming a material are now controlling how the material behaves. For EBSD, these can be electrical, thermal, or mechanical properties, but EBSD is the driving force to truly understanding how and why your material behaves the way it does.

 

Materials Selection While Black Friday Shopping

Matt Nowell, Product Manager EBSD, EDAX

I’m writing this blog the Monday after the Thanksgiving holiday, and having survived a Black Friday shopping adventure that started just a couple of hours after finishing the turkey last Thursday. While waiting in line for the doors to open and the tryptophan to wear off, I worked on plotting a strategy through the store to find a robotic vacuum cleaner, an Amazon Echo, some LED lights for outside, and the latest Minecraft toy for my youngest son. As the clock ticked towards 6 P.M., I felt confident in my plan and ready to go.

When the doors opened, and folks started streaming in, I grabbed a cart. This is always a tricky decision, as it immediately limits your mobility and possible escape routes. However, I knew ironically that the vacuum robot wasn’t going to push himself around quite yet. With cart in hand, I had to take a wider path, so I went a circuitous route to avoid the anticipated crowds, and ended up in housewares near where I expected the robot to be.

The first thing that caught my eye though wasn’t the vacuum cleaners, or the shiny Christmas plates, it was the cooking pans. It wasn’t the color, or size, or even price that piqued my interest, it was the material on the label: Titanium.

Now I’m no gourmet chef, but I generally don’t think of Titanium as a material used for pans. I’m more familiar with its applications in aerospace engine applications, in medical implants (see https://edaxblog.com/2014/01/22/bringing-oim-analysis-closer-to-home/), and in golf clubs. I’ve certainly polished more Titanium samples than I want to remember. Seeing these Titanium pans, it got me thinking about material selection, how material scientists must balance different materials properties (and cost) to match a material with an application, and where Titanium fits in the world of cooking.

One of my favorite cookbooks is “The Food Lab”, by J. Kenji Lopez-Alt, which has the sub-title “Better Home Cooking Through Science”. I’ve enjoyed reading this book because the author systematically tackles questions like “Is New York pizza better because of the water?” using the Scientific Method, and writes humorously about the results as well as providing delicious recipes. I’ve also taken to following him on Twitter (@TheFoodLab), and a recent post shows the pictures, (shown here as Figure 1), using an Infrared (IR) camera, of skillets made of different materials.

Figure 1. Heat distribution in pans made of different materials.

I found it a fascinating picture visualizing the heat distribution, derived from the thermal conductivity of the materials. Stainless steel is non-reactive, so you can cook anything in it. However, it doesn’t have the greatest thermal conductivity. Cast iron has a similar issue, and takes a while to warm up but once it’s hot, it stays hot, which is great for searing meat. Aluminum has better thermal conductivity, but also soft, scratchable, and can react with some foods. Copper is another material with excellent thermal conductivity, but it is reactive to certain foods. When confronted with these types of property challenges, material scientists like the best of both worlds, so composite pans have been made where copper and/or aluminum are sandwiched with steel to try and combine thermal performance with a non-reactive surface.

So what advantages does Titanium bring to this application? As with the aerospace and recreational applications, Titanium has a good strength to weight ratio. It’s lighter than steel and stronger than aluminum, as well as being corrosion-resistant. This means it’s the lightest cookware you can buy. Not necessarily the most important feature in the kitchen, but it does have value for cookware designed for camping.

All this thinking about optimization of thermal conductivity made me think about work done on thermoelectric materials. These materials convert a temperature differential into an electrical potential. Unlike these cooking pans, these materials want to minimize thermal conductivity while maximizing electrical conductivity. This is an interesting challenge. Thermoelectric properties can be optimized by increasing grain boundary density to disrupt phonon heat transfer. Figure 2 shows an EBSD IPF map of a Bismuth Telluride thermoelectric material that was made by shock-wave consolidation. This manufacturing process was investigated as a way to consolidate thermoelectric powders while retaining the nanostructure. More information can be found in our paper at: https://link.springer.com/article/10.1007/s11664-011-1878-4.

Figure 2. EBSD IPF map of a Bismuth Telluride thermoelectric material that was made by shock-wave consolidation

In the end, I decided not to buy a pan, but I did get the robot vacuum cleaner. I look forward to asking Alexa EBSD-related questions, just to see what happens. I also hope Santa brings me something that is microstructurally interesting, that perhaps I’ll use in my next blog.