materials characterization

One Analysis Technique – So Many Options!

Roger Kerstin, North America Sales Manager, EDAX

X-ray Fluorescence (XRF) solutions – which type of XRF instrument should I choose?

Most of the XRF systems out there are very versatile and can be used in many different applications, but they are typically suited for a specific type of analysis. Since the discovery of XRF many decades ago there have been new developments and new instruments just about every year. The term Florescence is applied to phenomena in which the absorption of radiation of a specific energy results in the re-emission of radiation of a different energy. There are two different types of detectors for XRF systems: Wavelength Dispersive (WDS) and Energy Dispersive (EDS).

In energy dispersive analysis, the fluorescent X-rays emitted by the material sample are directed into a solid-state detector which produces a “continuous” distribution of pulses, the voltages of which are proportional to the incoming photon energies. This signal is processed by a multichannel analyzer (MCA) which produces an accumulating energy spectrum that can be processed to obtain analytical data.

In wavelength dispersive analysis, the fluorescent X-rays emitted by the material sample are directed into a diffraction grating monochromator. The diffraction grating used is usually a single crystal. By varying the angle of incidence and take-off on the crystal, a single X-ray wavelength can be selected. The wavelength, and therefore the energy, obtained is given by Bragg’s law:

nλ = 2d Sinθ

In the XRF world there are many different types of instruments to choose from: large systems to small systems; high powered systems to low powered systems, floor standing systems to benchtop to portable systems.

What do I choose, where do I start?

The answer to these questions is that it really depends on the samples you are trying to measure and the performance you are trying to achieve. I really classify these instruments in 3 different categories: bulk, portable, and small spot.

Bulk XRF: This typically means that you have samples that are either powders, liquids or even solids that you need to analyze quickly. Bulk instruments have a large x-ray spot size to excite a lot of the elements fast and get a quick answer. They can be EDS or WDS instruments, benchtop or floor standing, and low or high power. The kind of analyzer will determine what you can or cannot measure. The higher the power, the lighter the elements and the lower the concentrations. The benchtops typically are lower power (50kv and lower) and are usually decent for go/no go type analysis and even everyday type of analysis when super low LOD’s are not needed, or light elements (below Na) are not of a concern. If you need lighter elements or lower LOD’s then typically you would go with a high power WDS system and these typically can go up to 4kw of power and have a vacuum chamber or He environment .

Portable XRF: This is just what is says – portable. These analyzers are typically used for sorting metals, in the geological field, or anything that you can’t just bring to the lab. The performance of these have come a long way and they are a critical tool for many industries. They tend to have a larger spot size but since they are portable they must be light to carry around all day. They are typically lower power and lower current, which does not allow them to have the same type of performance as the lab type instruments but usually they are good for sorting and identifying samples. They are also very good for ancient artifacts or paintings that can’t be brought to a lab.

μXRF (Micro spot XRF): These are the instruments that have a small spot size compared to all other XRF systems and they are used in smaller sample identification or mapping of a sample. There are several different types of μXRF analyzers. Some use collimators to focus the beam (this typically loses intensity) for applications like coating thickness testing or alloy id. These are usually designed to be inexpensive and benchtop for quality control applications. They are versatile but also limited to the elements they can measure. Most of these only analyze down to Potassium as they usually do the analysis in an air environment. Then there are μXRF systems that use optics to focus the x-ray to smaller spot sizes. These are used for more in-depth analysis, and are equipped with a vacuum chamber, mapping and low LODs.

Before buying an XRF system many factors must be taken into consideration and you need to ask yourself some of the following questions to really determine the best fit for your applications.

• How big is my sample?
• Can I destroy my sample?
• What levels of detection do I need to measure?
• How many samples per day will I measure?
• Can I pull a vacuum with my sample?
• What elements do I need to measure?
• What type of flexibility do I need for multiple sample types?
• What size features or samples do I need to measure?
• How much money do I have?

As you can see there are many questions to answer and many options for XRF instruments. The more you know about what you want to measure, the better you can narrow down your search for the proper instrument.

XRF is a very powerful technique but you do need to get the proper tool for the job.
Happy hunting and good luck!

Seeing is Believing?

Dr. René de Kloe, Applications Specialist, EDAX

A few weeks ago, I participated in a joint SEM – in-situ analysis workshop in Fuveau, France with Tescan electron microscopes and Newtec (supplier of the heating-tensile stage). One of the activities during this workshop was to perform a live in-situ tensile experiment with simultaneous EBSD data collection to illustrate the capabilities of all the systems involved. In-situ measurements are a great way to track material changes during the course of an experiment, but of course in order to be able to show what happens during such an example deformation experiment you need a suitable sample. For the workshop we decided to use a “simple” 304L austenitic stainless-steel material (figure 1) that would nicely show the effects of the stretching.

Figure 1. Laser cut 304L stainless steel tensile test specimen provided by Newtec.

I received several samples a few weeks before the meeting in order to verify the surface quality for the EBSD measurements. And that is where the trouble started …

I was hoping to get a recrystallized microstructure with large grains and clear twin lamellae such that any deformation structures that would develop would be clearly visible. What I got was a sample that appeared heavily deformed even after careful polishing (figure 2).

Figure 2. BSE image after initial mechanical polishing.

This was worrying as the existing deformation structures could obscure the results from the in-situ stretching. Also, I was not entirely sure that this structure was really showing the true microstructure of the austenitic sample as it showed a clear vertical alignment that extended over grain boundaries.
And this is where I contacted long-time EDAX EBSD user Katja Angenendt at the MPIE in Düsseldorf for advice. Katja works in the Department of Microstructure Physics and Alloy Design and has extensive experience in preparing many different metals and alloys for EBSD analysis. From the images that I sent, Katja agreed that the visible structure was most likely introduced by the grinding and polishing that I did and she made some suggestions to remove this damaged layer. Armed with that knowledge and new hope I started fresh and polished the samples once more. And I had some success! Now there were grains visible without internal deformation and some nice clean twin lamellae (figure 3). But not everywhere. I still had lots of areas with a deformed structure and whatever I tried I could not get rid of those.

Figure 3. BSE image after optimized mechanical polishing.

Back to Katja. When I discussed my remaining polishing problems she helpfully proposed to give it a try herself using a combination of mechanical polishing and chemical etching. But even after several polishing attempts starting from scratch and deliberately introducing scratches to verify that enough material was removed we could not completely get rid of the deformed areas. Now we slowly started to accept that this deformation was perhaps a true part of the microstructure. But how could that be if this is supposed to be a recrystallised austenitic 304L stainless steel?

Table 1. 304/304L stainless steel composition.

Let’s take a look at the composition. In table 1 a typical composition of 304 stainless steel is given. The spectrum below (figure 4) shows the composition of my samples.

Figure 4. EDS spectrum with quantification results collected with an Octane Elite Plus detector.

All elements are in the expected range except for Ni which is a bit low and that could bring the composition right at the edge of the austenite stability field. So perhaps the deformed areas are not austenite, but ferrite or martensite? This is quickly verified with an EBSD map and indeed the phase map below confirms the presence of a bcc phase (figure 5).

Figure 5. EBSD map results of the sample before the tensile test, IQ, IPF, and phase maps.

Having this composition right at the edge of the austenite stability field actually added some interesting additional information to the tensile tests during the workshop. Because if the internal deformation in the austenite grains got high enough, we might just trigger a phase transformation to ferrite (or martensite) with ongoing deformation.

Figure 6. Phase maps (upper row) and Grain Reference Orientation Deviation (GROD) maps (lower row) for a sequence of maps collected during the tensile test.

And that is exactly what we have observed (figure 6). At the start of the experiments the ferrite fraction in the analysis field is 7.8% and with increasing deformation the ferrite fraction goes up to 11.9% at 14% strain.

So, after a tough start the 304L stainless steel samples made the measurements collected during the workshop even more interesting by adding a phase transformation to the deformation. If you are regularly working with these alloys this is probably not unexpected behavior. But if you are working with many different materials you have to be aware that different types of specimen treatment, either during preparation or during experimentation, may have a large influence on your characterization results. Always be careful that you do not only see what you believe, but ensure that you can believe what you see.

Finally I want to thank the people of Tescan and Newtec for their assistance in the data collection during the workshop in Fuveau and especially a big thank you to Katja Angenendt at the Max Planck Institute for Iron Research in Düsseldorf for helpful discussions and help in preparing the sample.

It came from outer space!

Dr. Jens Rafaelsen, Applications Engineer, EDAX

One of the interesting aspects of being in applications is the wide variety of interesting samples that you come across and this one came up when I was looking for a sample for an upcoming webinar, where I needed some ‘pretty’ maps. Our US EBSD applications engineer Shawn Wallace was previously at The Department of Earth and Planetary Sciences at the American Museum of Natural History in New York and consequently he knows quite a bit about space rocks. He handed me a thin section of a meteorite labeled NWA 10296 (more information at and it did not disappoint.

There were a lot of interesting features in the sample, but I ended up concentrating on one of the large chondrules shown below.

Figure 1. BSE image

The primary composition of the sample is olivine (magnesium iron silicate) and the maps below show a high concentration of the Mg internal to the chondrule with an outer perimeter low in Mg and Si. The iron within the chondrule is forming particulates with low content of O and some veins of Al is also seen while the outer perimeter is an iron oxide.

Figure 2. Mg, Si and O maps (left to right).

My astronomy classes are long behind me and I can’t claim to be able to extract deep insight as to the formation and origin of this meteor but regardless, there’s something fascinating about looking at some of the early matter of the universe. As I heard Emma Bullock phrase it at the Lehigh Microscopy School, “It might just be an old rock, but it’s an old rock from outer space!”.

Figure 3. Fe (left) and Al (right) maps.

The upcoming webinar is less about space rocks and more about mapping and data representation so if this has your interest, please join us April 11 2018. Click here to register . Alternatively you can always find past webinars on our homepage

EBSD in China

Sophie Yan, Applications Engineer, EDAX

EBSD in China is a big topic and it may sound as though I am not qualified to judge or to summarize the current situation. However, as I have worked with EBSD applications for several years, I have personal experience to share. More than ten years ago, I didn’t know about EBSD when I was studying the microstructure of materials. I was in Shanghai at that time and the environment was kind of open. It is probably that at that time in China: very few people knew about EBSD. Today the situation has changed enormously after just after 10+ years. Most researchers now try to put EBSD on their microscope. Microscopes including EDS and EBSD capability are standard in Chinese universities.

As an Applications Engineer, I visit research organizations, companies, and factories. I meet customers from many different backgrounds. Some of them are experts but more are new to microanalysis, especially students from science and engineering universities. They may each have a different focus, but they all have high expectations of EBSD. The professors care about the functions which can solve their issues. If there is currently no such function, then they often ask if we can add it. Entry level users prefer to learn how to operate the microscope and detectors quickly so that they get their results as soon as possible. The most frequent question asked is, what can EBSD do? Then I begin my introduction and I see that they become more and more interested. Sometimes they have high expectations. For example, when I demonstrate stress/strain analysis, I am often asked how to get stress value. This is a common misunderstanding because as an indirect way technique, EBSD can show the strain trend of materials, but it is beyond it to measure stress value.

My routine work includes introduction and training. Over a period of time, I can see a newcomer becoming more experienced and getting his own results, which makes me proud as a supporter. Whereas I care about the EBSD technology itself, the customers are more interested in learning how to use it in their work to solve some of their analysis challenges. They often give me new ideas and make me aware of other areas besides pure technology, for example, how to remove the users’ initial fear for EBSD. As a student majoring in material science I thought crystallography was very different from the reality I now understand. As a ‘teacher’ I am not focused on how to keep our users’ interest on EBSD and reminding to them to use it regularly. Fortunately, social media has improved the speed and consistency of our communication. When issues are solved quickly, people think the EBSD technique is less difficult. Effective communication contributes to the technology transfer.

The level of adoption of EBSD hardware in China is excellent, but the usage of and research into the technique is still in its infancy. I have spoken to many people about this issue. The interesting thing is that outsiders tend to give an optimistic perspective. An Australia professor told me several years ago that we should be taking a longer-term view and that there would probably be, a tremendous change in the next ten years. Quantitative results make a qualitative change. I hope he is right!

Fortunately, EBSD usage in China has increased greatly and continues to increase, which shows us a promising future.




Water, Sand and Salt, and Why We Care About Compounds

Tara Nylese, Global Applications Manager, EDAX

Somewhere around the age of five years old, many of us learn that another way to identify water is by the molecular name, H2O. This usually leads to more questions like: ‘What is H?’, ‘What is O?’, ‘How does that make water?’, ‘Why should I care?’. Over the years, we grow into more advanced chemistry students exploring topics like compound formulas, and we learn that the world we live in is made up of complex associations of combined atoms. A chemical compound is a substance that is composed of two or more chemical elements. The reason that we should care about compounds is that an element such as Oxygen (O) can be very different if it is associated with Hydrogen into H2O to make water, or as SiO2, which is Silicon Dioxide that makes up sand on a beach, or as Fe2O3, which is ferric oxide, loosely known as rust on steel. Therefore, as microanalysts, we should pay close attention to compounds because the elements alone do not always tell us the complete nature of the material we’re analyzing.

Once we grow into an “expert scientist,”* we become deeply entrenched in the details of microanalysis, and we often forget to take a step back to see the big picture. For example, as an EDS analyst, I look at the spectrum below and I think “what a nice sodium peak” or “hmm, am I picking up Al due to scatter at variable pressure?” But unless I’m using it for an introduction to a microscopy and microanalysis student lecture I don’t often simply call it what it is, and that is NaCl, or salt.

Next, we look at the electron image at very low mag and that gives us a better contextual understanding that it is a grain of salt.

When we look back at the spectrum again with a big picture view, we recognize that the main elements present in the spectrum are Na and Cl, and that they make up the compound NaCl, or salt.

In follow up to my recent webinar, I received a lot of questions asking “What are CompoMaps?” and “How can I use CompoMaps?” I was glad to see so much interest in such a valuable routine, and I do hope that users of every level can use this “Compound” view to understand their materials more deeply. To answer the first question, “CompoMaps” is a sophisticated software routine that creates a display of the elemental composition of each pixel. That is, the intensity of the pixel display color is a direct representation of the peak intensity of an element. It is helpful when there is a trace amount of an element, because the routine separates the peak from the background, removing the noise and intensifying the signal. It is perhaps most useful for separating element peaks where there is ambiguity whether there is one element, or another. In the example shown below, I was collecting this data when I happened to get a chance to web connect with an earth sciences professor. After he saw the before and after, he commented that the “after” made much more sense because those two elements would not likely be in combination together in any mineral.

The results here show that Phosphorus in green and Zirconium in purple are definitely located in two different phases.

Before CompoMaps:
After CompoMaps:
Superimposed into one image:
What we didn’t see in the webinar was the Oxygen map, shown here for the first time:
The display shows both with (right) and without (left) the Phosphorus and Zirconium superimposed, and this gives us a better understanding about the compound, since Oxygen is present with these elements. After full investigation of all element maps, we find that the two phases are Ca5(PO4)3F, or fluorapatite and ZrSiO4, or Zircon.

Finally, the answer to the question, “How can I use CompoMaps?”, is easy. This is a routine that EDAX has had in all of our software packages from Genesis to TEAM™ (as Net Maps) and now in APEX™. The routine has been optimized for APEX™ with 64-bit architecture and advanced processing capability, along with an easy to use workflow for results in live-time. So, give it a try and see what you can find!

*My personal opinion is that we should never let ourselves call ourselves experts, lest we forget that there is always something new to learn.

Seeing the World a Little Differently.

Jonathan McMenamin, Marketing Communications Specialist, EDAX

When I started at EDAX five years ago, I knew very little about materials analysis. My education was in Management Information Systems and Computer Science and my work experience came from spending eight years in the Sports Information department at Rowan University. Little by little, I have learned more about the various analysis techniques and feel comfortable enough to write this blog.

One of the first things that caught my eye at EDAX was a series of maps generated from Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Diffraction (EBSD) analysis. The vibrant colors and patterns are very beautiful and almost look like art. Lately, I have noticed objects in everyday life that remind me of these maps.

This past July, my wife and I and our friend took a trip to Ireland. We visited Slieve League in county Donegal, one of the highest sea cliffs in Europe (1,998 feet from the highest point). We decided to hike up the cliffs for a bit and on our way up the rocky pathway on this rainy, foggy day, I came across a large rock that grabbed my attention. It was covered in a pattern that reminded me of an EBSD map showing grain boundaries. I quickly snapped a few photos (below) to show to our EBSD product manager, Matt Nowell when I returned.

Photos of a rock taken at Slieve League in Donegal, Ireland.

A few weeks later, I was at a restaurant in the St. Louis Lambert International Airport having dinner with a few of my coworkers following a successful Microscopy & Microanalysis (M&M) show. While we were waiting for the waitress to return with our food, I looked up at the light hanging over the table next to ours and noticed that it resembled an EBSD pattern. I found another example of a beautiful glass piece when I was decorating my Christmas tree with my wife a few weeks ago. My wife’s grandmother and aunt give her gorgeous hand-blown glass ornaments from Cape Cod every year. As I was hanging one on the tree, I took a photo and explained to her that it looked like the maps we produce at work.

Light in a restaurant at the St. Louis Lambert International airport. One of my family’s hand-blown glass Christmas ornaments.

Ever since I was little, I have had a fascination with the ocean and sharks in particular. One of my favorite species is the Rincodon typus, more commonly known as a whale shark. It is not only the largest living nonmammalian vertebrate, but the whale shark has a very particular pattern of pale yellow spots and stripes on its skin. When I was putting together the EDAX Interactive Periodic Table of Elements (, I came across a map of nickel nanopillars on indium at 3 kV demonstrating low kV microanalysis, and I immediately though it resembled a whale shark.

Rincodon typus, commonly known as a whale shark. Low kV microanalysis: nickel nanopillars on indium at 3 kV.

My final example comes from one of my favorite television shows, The Curse of Oak Island on the History Channel. The show follows a group of men that are in search of treasure that is supposedly buried on a small island off the coast of Nova Scotia, Canada. Several theories exist as to what the treasure is exactly, ranging from Knights Templar hiding sacred religious relics to pirates burying gold and jewels. The group has uncovered many clues and they have found various interesting items including ancient coins, bones from the 1600s, and pieces of wood, ceramic, and paper. On an episode in the current season (season 5), the group discovered a rose-headed spike while metal detecting near the coast line. If I had watched this prior to working at EDAX, I probably wouldn’t have thought anything about it. However, now that I know much more about microanalysis, I immediately thought to myself that they should use EDS analysis to find out what elements the metal was comprised of, to possibly date it based on what materials were used during that period for creating spikes. As it turns out, that is exactly what they did. The team found out that the spike was comprised of 90% iron and 10% carbon with no traces of manganese or sulfur. This showed that it was pre-1840s when manganese was used in metal work and that it was smelted with charcoal before the use of fossil fuels in the 1700s. All pointing to the fact that people were on Oak Island hundreds of years ago.

Rose-headed spike.

The world of microanalysis is extremely interesting and present all around us, you just have to keep your eyes open to see where it pops up in your daily life.

EBSD and the Real World

Shawn Wallace, Applications Specialist, EDAX

One of the powers of EBSD is showing how microstructures are created by the processing of a material and how these microstructures can change the material properties of a sample. Explaining this connection to novice users or potential customers can be difficult. Luckily for me, my sidewalk has given me a perfect example.

It is made up of oriented bricks. Some are placed square side up. Some are placed rectangular side up. But look at the color? Why are some bricks wet while others are dry? The square sides tend to be dry, rectangular still wet.

Now let’s start building up a case as to why this happens.

The first step is understanding how these bricks are made and what they are made of. You take clay, you slap it into a mold. You press the rectangular side to compress it to fill the mold. Fire it and tada, you have a brick. A lot is going on in these steps that you can’t see with the naked eye.

The main thing is that the squeezing step is really having a profound effect on the brick. You are taking randomly oriented platy minerals (Figure 1) and giving them a preferred orientation by squeezing them (Figure 2). It is like a house of cards that has fallen down. You now have grains lying down. Water can’t break through the new “sheets”, but turn the brick on its side and you have pathways to drain the water.

Figure 1. Clay minerals in bricks are often platy in shape. Without any outside forces, the grains are randomly orientated.

FIgure 2. By compressing the material to form a brick shape, the grains are laid flat relative to each other. This is much like EBSD samples with a texture.

This is what you are seeing here. The square bricks have clays that are oriented to wick the water deeper in to the brick, while on the rectangular faces, the water has nowhere to go (Figure 3). Square bricks wick away and are dry, while rectangular faces are still wet.

Figure 3. After the brick is pressed, there are no connecting paths for the water to flow into the material from the top. But from the side, there are channels leading into the bricks. This is what allows the water to wick inside the brick from the square side, but not the rectangular side.

On a high level, this is what EBSD is all about. You are seeing how these processes forming a material are now controlling how the material behaves. For EBSD, these can be electrical, thermal, or mechanical properties, but EBSD is the driving force to truly understanding how and why your material behaves the way it does.