A Cog’s Case for Corporate Utopia

David Durham, Regional Sales Manager, EDAX

Not too long ago I went to my optometrist to get an eye exam for some replacement glasses. My last pair had been stolen after my car was broken into in broad daylight during lunch at a restaurant in the Bay Area. (What the thief planned on doing with my prescription glasses is still a mystery to me.)

Figure 1: The old phoropter* (top) and the new phoropter** (bottom).

It had been at least a couple years since my last examination, but I was prepared to be guided through all the typical tests, culminating with that “giant-machine-with-multiple-lenses” pressed into my face to help the optometrist determine the prescription that would best correct the errors in my vision. I’d later learn that this machine is called a phoro-optometer, or more commonly a “phoropter.” And, contrary to my previous experiences with this instrument, it was now a super-sleek, slimmed down, digital version of the machine, using a computer controlled digital refraction system to cycle through the refraction options instead of using stacks of physical lenses that had to be manually cycled by the optometrist.

It was much smaller, quieter, faster, and easier than the version with which I was familiar. I was thoroughly impressed. But I was even more impressed when the instrument was pulled away and I saw the Ametek logo emblazoned on the side of it.

I couldn’t help but reflexively blurt out “Hey I work there!” to which the optometrist looked up from my file and began curiously interrogating me about my history in the eye care industry. Sadly, he quickly lost interest after I explained that I worked in a different division of Ametek that manufactures EDS, EBSD, and WDS systems.

After my exam, for some reason I felt a bit intimidated about not knowing more about Ametek’s business units outside of the EDAX niche to which I belong. I knew Ametek was a huge corporation, steadily growing larger over the decades — mainly by acquisition of smaller companies – but I’d never really grasped the sheer size and breadth of everything Ametek does. This wasn’t the first time I’ve been in this type of situation. Prior to joining EDAX/Ametek I worked for another scientific instrumentation corporation, slightly smaller than Ametek but still a similar type of behemoth with a wide range of companies making products that service comparable industries and applications. Even at that corporation my knowledge of the business outside of my business unit’s portfolio was very limited. These places are just so big!

Working at large corporations like these can, at times, be a little bit discouraging if you think of yourself as just a single cog in a machine with thousands of moving parts. Giant corporations certainly seem to have a bad reputation these days and I’ll admit I’ve experienced my fair share of corporation-induced angst over the years. Working within a large bureaucracy can make completing the smallest internal tasks overwhelming. Being in a smaller company that is acquired – I’ve been through two acquisitions — can be disruptive to business and cause a lot of anxiety.

But is there a good side to these mega-corporations? I think so.

I can find some important benefits that could be argued to outweigh the negative aspects, not just to the cogs like myself but also to the markets that they serve. Whether or not these apply to other more prominent mega-corporations is debatable, but I think they seem to be reasonable positive characteristics, at least from my experience in the scientific instrumentation field.

Having the brand name recognition has always been an advantage. Customers (and their procurement departments) are typically more willing to do business with companies that have a long history of manufacturing products. Being in business for multiple decades with a proven track record of having the resources to reliably deliver products to the market and consistently service its user-base generates heaps of reassurance for customers that a younger or smaller company just can’t provide. It works similarly for vendors as well – it turns out that people are always more willing to sell you stuff if they’re confident that your company will pay for it.

Being in a large corporation also offers a huge advantage in the ability to research and develop new technology and product improvements. This can come by brute force – having deeper pockets to invest more money into R&D – or even by utilizing the synergy between individual companies under the corporation’s umbrella. EDAX is a great example of this in a couple ways. Ametek’s purchase of a new business unit in 2014 facilitated the development of EDAX’s groundbreaking Octane Elite and Octane Elect EDS systems, allowing for speed and sensitivity that had never been achieved before in any other EDS system. Collaboration between EDAX and another sister company within the Materials Analysis Division of Ametek, ushered in the release of EDAX’s new Velocity™ highspeed CMOS EBSD camera, by far the fastest EBSD system available. Realization of these two milestones of innovation would have been significantly delayed without the help of Ametek’s resources.

Figure 2: The Octane Elite (left) and the Velocity™ Super (right), two of EDAX’s products that were developed, in part, with the help of other business units inside Ametek.

But what I think tends to be the best part is that, as long as a company is meeting its targets and things are humming along nicely, corporations – at least the good ones, in my opinion — are usually happy to just let the business unit do its own thing. Having an “if it ain’t broke don’t fix it” mentality is the ideal way to keep the key talent happy and keep the business growing and making money. It also makes it possible to retain some semblance of the original company culture that contributed to its success in the first place. This is the holy grail for us cogs – being able to keep that small business feel while also being able to take advantage of all the big business benefits at the same time. Again, EDAX is a good example of this, with many of EDAX’s employees being legacy staff hired on long before the EDAX acquisition. This tells me Ametek must be doing something right.

So, I guess it’s debatable. While we may be willingly marching our grandchildren into a dystopia where three or four companies own all the businesses in the world, there are some undeniable advantages that working for a big company brings as well. And I take some comfort in the fact there are some very intelligent and innovative people behind the curtains, trying to do good things to make their customers happy and generally improve the lives of everyone in the world. We may or may not see all the things like the better phoropters out there, but our lives are almost certainly benefited by them whether we realize it or not.

* Photo from https://en.wikipedia.org/wiki/Phoropter
** Photo from http://www.reichert.com/

Saying What You Mean and Meaning What You Say!

Shawn Wallace, Applications Engineer, EDAX

A recent conversation on a list serv discussed sloppiness in the use of words and how it can cause confusion. This made me consider that in the world of microanalysis, we are not immune. We are probably sloppiest with two particular words. They are resolution and phase.

Let us start with how we use the word phase and how phases are commonly defined in microanalysis. In Energy Dispersive Spectroscopy (EDS), we use phase for everything, for example, phase mapping, phase library. In Electron Backscatter Diffraction (EBSD), the usage is a little more straightforward.

So, what is a phase? Well to me, a geologist, a phase has both a distinct chemistry and a distinct crystal structure. Why does this matter to a geologist? Two different minerals with the same chemistry, but with different structures, can behave in very different ways and this gives me useful information about each of them.
The classic example for geologists is the Al2SIO5 system (figure 1). It has three members, Kyanite, Sillimanite, and Andalusite. They each have the same chemistry but different structures. The structure of each is controlled by the pressure and temperature at which the mineral equilibrated. Simple chemistry tells me nothing. I need the structure to tease out that information.

Figure 1. Phase Diagram of the Al2SiO5 system in geological conditions. Different minerals form at different pressures and temperatures, letting geologists know how deep and/or the temperature at which the parent rock formed.**

EDS users use the term phase much more loosely. A phase is something that is chemically distinct. Our phase maps look at a spectrum pixel by pixel and see how they compare. In the end, the software goes through the entire map and groups each pixel with like pixels. The phase library does chi squared fits to compare the spectrum to the library (figure 2).

Figure 2. Our Spectrum Library Match uses as Chi-squared fit to determine the best possible matches. This phase is based on compositional data, not compositional and structural data.

While the definition of phase is relatively straight forward, the meaning of resolution gets a little murkier. If you asked someone what the EDS resolution is, you may get different answers depending on who you ask. The main way we use the term resolution when talking about EDS is spectral resolution. This defines how tight the peaks in a spectrum are (figure 3).

Figure 3. Comparison of EDS vs. WDS spectral resolution. WDS has much higher resolution (tighter peaks) than EDS, but fewer counts and more set-up are required.

The other main use of resolution, in EDS is the spatial resolution of the EDS signal itself (figure 4). There are many factors which determine this, but the main ones are the accelerating voltage and sample characteristics. This resolution can go from nanometers to microns.

Figure 4. Distribution of the electron energy deposited in an aluminum sample (top row) and a gold sample (bottom row) at 15 kV (left column) and 5 kV (right column). Note the dramatic difference in penetration given by the right hand side scale bar.

The final use of resolution for EDS is mapping resolution. This is by far the easiest to understand. It is just the step size of the beam while you are mapping.

Luckily for us, the easiest way to find out what people mean when they use the terms resolution or phase, is just to ask. Of course, the way to avoid any confusion is to be as precise as possible with your choice of words. I resolve to do my part and communicate as clearly as I can!

** Source: Wikipedia

What’s in a Name?

Matt Nowell, EBSD Product Manager, EDAX

The Globe Theatre

I recently had the opportunity to attend the RMS EBSD meeting, which was held at the National Physics Lab outside of London. It was a very enjoyable meeting, with lotsof nice EBSD developments. While I was there, I was able to take in a bit of London as well. One of the places I visited was the Shakespeare’s Globe Theater. While I didn’t get a chance to see a show here (I saw School of Rock instead), it did get me thinking about one of the Bard’s more famous lines, “What’s in a name? That which we call a rose by any other word would smell as sweet” from Romeo and Juliet.

I bring this up because as EBSD Product Manager for EDAX, one of my responsibilities is to help name new products. Now my academic background is in Materials Science and Engineering, so understanding how to best name a product has been an interesting adventure.


The earliest product we had was the OIM™ system, which stood for Orientation Imaging Microscopy. The name came from a paper introducing EBSD mapping as a technique. At the time, we were TSL, which stood for TexSem Laboratories, which was short for Texture in an SEM. Obviously, we were into acronyms. We used a SIT (Silicon Intensified Target) camera to capture the EBSD patterns. We did the background processing with a DSP-2000 (Digital Signal Processor). We controlled the SEM beam with an MSC box (Microscope System Control).

Our first ‘mapped’ car.

For our next generator of products, we branched out a bit. Our first digital Charge-Coupled Device (CCD) camera was called the DigiView, as it was our first digital camera for capturing EBSD patterns instead of analog signals. Our first high-speed CCD camera was called Hikari. This one may not be as obvious, but it was named after the high-speed train in Japan, as Suzuki-san (our Japanese colleague) played a significant role in the development of this camera. Occasionally, we could find the best of both worlds. Our phase ID product was called Delphi. In Greek mythology, Delphi was the oracle who was consulted for important decisions (could you describe phase ID any better than that?). It also stood for Diffracted Electrons for Phase Identification.

Among our more recent products, PRIAS™ stands for Pattern Region of Interest Analysis System. Additionally, though, it is meant to invoke the hybrid use of the detector as both an EBSD detector and an imaging system. TEAM™ stands for Texture and Elemental Analysis System, which allowed us to bridge together EDS and EBSD analysis in the same product. NPAR™ stands for Neighbor Pattern Averaging and Reindexing, but I like this one as it sounds like I named it because of my golf game.
I believe these names have followed in the tradition of things like lasers (light amplification by stimulated emission of radiation), scuba (self-contained underwater breathing apparatus), and CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart). It generates a feeling of being part of the club, knowing what these names mean.

Velocity™ EBSD Camera

The feedback I get though, is that our product names should tell us what the product does. I don’t buy into this 100%, as my Honda Pilot isn’t a self-driving car, but it is the first recommendation on how to name a product (https://aytm.com/blog/how-to-name-a-product-10-tips-for-product-naming-success/). Following this logic, our latest and world’s fastest EBSD camera is the Velocity™. It sounds fast, and it is.

Of course, even when using this strategy, there can be some confusion. Is it tEBSD (Transmission EBSD) or TKD (Transmission Kikuchi Diffraction)? Does HR-EBSD give us better spatial resolution? Hopefully as we continue to name new products, we can make our answer clear.

Picture postcards from…

Dr. Felix Reinauer, Applications Specialist, EDAX

Display of postcards from my travels.

…L. A. – this is the title of a popular song from Joshua Kadison which one may like or dislike but at least three words in this title describe a significant part of my work at EDAX. Truth be told I’ve never been to Los Angeles, but as an application specialist traveling in general is a big part of my job. I´m usually on the move all over Europe meeting customers for trainings or attending exhibitions and workshops. This part of my job gives me the opportunity to meet with lots of people from different places and have fruitful discussions at the same time. If I am lucky, there is sometimes even some time left for sightseeing. The drawback of the frequent traveling is being separated from family and friends during these times.

Nowadays it is easy to stay in touch thanks to social media. You send a quick text message or make phone calls, but these are short-term. And here we get back to the title of this post and Joshua Kadison´s pop song, because quite some time ago I started the tradition of sending picture postcards from the places I travel to. And yes, I am talking about the real ones made from cardboard, documenting the different cities and countries I get to visit. Additionally, these cards are sweet notes highly appreciated by the addressee and are often pinned to a wall in our apartment for a period of time.

Within the last couple of years, I notice that it is getting harder to find postcards, this is especially true in the United States. Sometimes keeping on with my tradition feels like an Iron Man challenge. First, I run around to find nice picture postcards, then I have to look for stamps and the last challenge is finding a mailbox. Finally, all these exercises must be done in a limited span of time because the plane is leaving, the customer is waiting, or the shops are closing. But it is still worth it.

It is not only the picture on the front side, which is interesting, each postcard holds one or more stamps – tiny pieces of artfully designed paper – as well. Postage stamps were first introduced in Great Britain in 1840. The first one showed the profile of Queen Victoria and is called “Penny Black” due to the black background and its value. Thousands of different designs have been created ever since attracting collectors all over the world. Sadly, this tradition might be fading. Nowadays the quick and easy way of printed stamps from a machine with only the value on top seems to be becoming the norm. But the small stamps are often beautiful to look at and are full of interesting information, either about historical events, famous persons or remarkable locations.

A selection of postage stamps from countries I have visited.

For me, as a chemist I was also curious about the components of the stamps. Like a famous painting, investigated by XRF to collect information about the pigments and how the artist used them. For the little pieces of art, the SEM in combination with EDS is predestinated to investigate them in low vacuum mode without damaging them. The stamps I looked at are from my trips to Sweden, Great Britain, the Netherlands and the Czech Republic. In addition, I added one German stamp as a tribute to one of the most important chemists, Justus von Liebig after whom the Justus-Liebig University in Gießen is named, where he was professor (1824 – 1852) and I did my Ph. D. (a few years later).

All the measurements shown below were done under the same conditions using an acceleration voltage of 20 kV, with a pressure of 30 Pa and 40x magnification. With the multifield map option the entire stamp area was covered, using a single field resolution of 64×48 each and 128 frames.

Czech Republic Germany


Netherlands Sweden

United Kingdom

The EDS results show that modern paper is a composite material. The basic cellulose fibers are covered with a layer of calcium carbonate to ensure a good absorption of the different pigments used. This can be illustrated with the help of phase mappings. Even after many kilometers of travelling and all the hands treating the postcards all features of the stamps are still intact and can be detected. The element mappings show that the colors are not only based on organic compounds, but the existence of metal ions indicate a use of inorganic pigments. Typical elements detected were Al, S, Fe, Ti, Mn and others. The majority of the analysis work I do for EDAX and with EDAX customers is very specialized and involves materials, which would not be instantly familiar to non-scientists. It was fun to be able to use the same EDS analysis techniques on recognizable, everyday objects and to come up with some interesting results.

“Strained” Friendship

Dr. Stuart Wright, Senior Scientist EBSD, EDAX

Don’t just read the title of this post and skip to the photos or you might think it is some soap opera drama about strained relations – instead, the title is, once again, my feeble attempt at a punny joke!

I was recently doing a little reference checking and ended up on the website for Microscopy and Microanalysis (the journal, not the conference). On my first glance, I was surprised to see my name in the bottom right corner. Looking closer, I noticed that the paper Matt Nowell, David Field and I wrote way back in 2011 entitled “A Review of Strain Analysis Using Electron Backscatter Diffraction” is apparently the most cited article in Microscopy and Microanalysis. I am pleased that so many readers have found it useful. I remember, at the time, that we were getting a lot of questions about the tools within OIM Analysis™ for characterizing local misorientation and how they relate to strain. It was also a time when HREBSD was really starting to gain some momentum and we were getting a lot of questions on that front as well. So, we thought it would be helpful to write a paper that hopefully would answer some practical questions on using EBSD to characterize strain. From all the citations, it looks as though we actually managed to achieve what we had strived for.

My co-authors on that paper have been great to work with professionally; but I also count them among my closest personal friends. David Field joined Professor Brent Adams’ research group at BYU way back in 1987 if my memory is correct. We both completed master’s degrees at BYU and then followed Brent to Yale in 1988 to do our PhDs together. David then went on to Alcoa and I went to Los Alamos National Lab. Brent convinced David to leave and join the new startup company TSL and I joined about a year later. David left TSL for Washington State University shortly after EDAX purchased TSL.

Before, I joined TSL, Matt Nowell* had joined the company and he has been at TSL/EDAX ever since. Even with all the comings and goings we’ve remained colleagues and friends.

I’ve been richly blessed by both their excellent professional talents and their fun spirited friendship. We’ve worked, traveled and attended conferences together. We’ve played basketball, volleyball and golf together. I must also brag that we formed the core of the soccer team to take on the Seoul National University students after ICOTOM 13 in Seoul. Those who attended ICOTOM 13 may remember that it was held shortly after the 2002 World Cup hosted jointly by Korea and Japan; in which Korea had such a good showing – finishing 4th. A sequel was played at SNU where the students pretty much trounced the rest of the world despite our best efforts 😊. Here are a few snapshots of us with our Korean colleagues at ICOTOM 13 – clearly, we were always snappy dressers!

* Don’t miss Matt’s upcoming webinar: “Applications of High-Speed CMOS Cameras for EBSD Microstructural Analysis”

Common Mistakes when Presenting EBSD Data

Shawn Wallace, Applications Engineer, EDAX

We all give presentations. We write and review papers. Either way, we have to be critical of our data and how it is presented to others, both numerically and graphically.

With that said, I thought it would be nice to start this year with a couple of quick tips or notes that can help with mistakes I see frequently.

The most common thing I see is poorly documented cleanup routines and partitioning. Between the initial collection and final presentation of the data, a lot of things are done to that data. It needs to be clear what was done so that one can interpret it correctly (or other people can reproduce it). Cleanup routines can change the data in ways that can either be subtle (or not so subtle), but more importantly they could wrongly change your conclusions. The easiest routine to see this on is the grain dilation routine. This routine can turn noisy data into a textured dataset pretty fast (fig. 1).

Figure 1. The initial data was just pure noise. By running it iteratively through the grain dilation routine, you can make both grains and textures.

Luckily for us, OIM Analysis™ keeps track of most of what is done via the cleanup routines and partitioning in the summary window on either the dataset level or the partition level (fig. 2).

Figure 2. A partial screenshot of the dataset level summary window shows cleanup routines completed on the dataset, as well as the parameters used. This makes your processing easily repeatable.

The other common issue is not including the full information needed to interpret a map. I really need to look at 3 things to get the full picture for an EBSD dataset: the IPF map (fig. 3), the Phase Map (fig. 4) and the IPF Legend (fig. 5) of those phases. This is very important because while the colors used are the same, the orientations differ between the different crystal symmetries.

Figure 3. General IPF Map of a geological sample. Many phases are present, but the dataset is not complete without a legend and phase map. The colors mean nothing without knowing both the phase and the IPF legend to use for that phase.

Below is a multiple phase sample with many crystal symmetries. All use Red-Green-Blue as the general color scheme. By just looking at the general IPF map (fig. 3), I can easily get the wrong impression. Without the phase map, I do not know which legend I should be using to understand the orientation of each phase. Without the crystal symmetry specific legend, I do not know how the colors change over the orientation space. I really need all these legends/maps to truly understand what I am looking at. One missing brick and the tower crumbles.

Figure 5. With all the information now presented, I can actually go back and interpret figure 3 using figures 4 and 5 to guide me.

Figure 4. In this multiphase sample, multiple symmetries are present. I need to know which phase a pixel is, to know which legend to use.














Being aware of these two simple ideas alone can help you to better present your data to any audience. The fewer the questions about how you got the data, the more time you will have to answer more meaningful questions about what the data actually means!

Welcome to Weiterstadt!

Dr. Michaela Schleifer, European Regional Manager, EDAX

The European team had a very exhausting but successful week last week. Some months ago, we discussed the possibility of holding a user meeting at our headquarters in Weiterstadt, Germany. During our stay in Wiesbaden it became a tradition to do at least one user meeting or workshop a year. Because of our move to Weiterstadt and the development of some new structure in the European organization, it took quite some time to plan another user meeting. In spring time, we discussed how to satisfy the different areas in Europe regarding language and also how to transfer information about new technology to our distributors. We finally decided that we should organize 3 different meetings during the week of October 15th. The first two days were for our German speaking customers in Europe, mid-week we invited our distributors and on the last two days we offered a user meeting for our English-speaking customers. There was a lot of organization to be done, like making hotel reservations, preparing presentations, organizing hosting and also booking nice restaurants for the evening events. All of us were a bit nervous about whether everything would work, whether we had forgotten anything important and whether our SEM and system would work properly. The week before the meetings we installed the Velocity™ camera, our new high speed EBSD system in our demo lab and our application people were very happy with the performance and had fun playing around with it.

On Monday October 15th we started our first user meeting in the Weiterstadt office at around 1 pm with customers from the German speaking area. Around 45 participants joined the meeting. At the beginning we gave an overview of our current products and explained that our complete SDD series is using the Amptek modules with Si3N4 windows. Based on some spectra we showed the improved light element performance. After that Felix, one of our application specialists, showed our new user interface APEX™ live and the discussion which arose showed the interest from our users. Although only some users are doing EDS on a TEM we explained a little bit about the differences between EDS on a TEM and on a SEM. We finished the first day with a question and answer session and invited all the participants to a nice location in Darmstadt to have a typical German dinner together.

The next day was completely dominated by EBSD. Our EBSD product manager Matt Nowell, who came from Draper, USA to support us during our meetings, demonstrated the performance of our new Velocity™ EBSD camera. Matt also explained the differences in the camera technology using CCD or CMOS chips and described direct electron detection. It was easy to get more than 3000 indexed points per second while measuring a duplex steel with the Velocity™ camera. Our EBSD application specialist René de Kloe presented a lot of tips and tricks regarding EBSD measurements and analysis of measurement too and did not get tired of answering all the questions. At the end of our program all participants left with a good feeling having learnt a lot and got some good ideas about how to improve their measurements or what they might try to measure on their own samples.

The next day we shortened our program for our distributors and explained our product range and gave live demonstrations of APEX™ software platform and the Velocity™ CMOS EBSD camera. This day was dominated by a lot of discussions with the group and also by questions about our roadmap for 2019.

On Thursday and Friday of this week we did the same program for our English-speaking customers in Europe as we did for the German speaking customers. We had around 15 participants.

During this week we had around 75 customers in our office in Weiterstadt. Each customer was different in his applications and how he uses our systems but what we could observe during the evening was that most of them are very similar in what they like for dinner:

Late on Friday evening the whole European team was very happy that we managed the week with all the meetings and that based on the feedback we got it was a successful week. You may be sure that all of us went home and had a relaxing weekend!

I would like to thank Matt, Rene, Felix, Ana, Arie, Rudolf, Andreas and Paul and especially our customers who gave some interesting presentations about their institutes and the work they are doing there.

One, Two, Three Times an Intern

Kylie Simpson, Summer Intern at EDAX

Kylie ‘at home’ in the Applications Lab.

This summer was my third working for the EDAX Applications Team. It has been an amazing opportunity to be directly involved with research, customer support, and software testing here in Mahwah. I was able to continue with the APEX™ software testing that I worked on last summer which I found incredibly interesting because I’ve been able to observe the software evolve to best meet customer needs and improve in overall performance. I also had the chance to attend the Microscopy and Microanalysis (M&M) show in Baltimore, MD. This was an incredible experience for an undergraduate student, like me, interested in Materials Science and Microscopy. I was able to connect with people in the field, attend talks on topics at the forefront of Microscopy research, and present a poster that I have been helping out with this summer here at EDAX.

The majority of my time this year has been focused on helping Dr. Jens Rafaelsen, the head of the Mahwah Applications Team, with the data collection and analysis for a paper on the effects of Variable Pressure on EDS. Although Variable Pressure is an incredibly useful tool for studying SEM samples that are susceptible to charging, the introduction of gas to the specimen chamber has implications that must be considered when collecting EDS spectra. Additional gas particles in the SEM chamber lead to a scattering of the electron beam, known as beam spread or beam skirting.

In order to study and quantify this phenomenon, we used a double insulated Faraday cup with a 10 µm aperture, pictured below, to measure the unscattered beam at different pressures and working distances. We also modeled this beam scattering using Monte Carlo simulations that consider the SEM geometry as well as the type of gas in the chamber, which vary based on the type of SEM. Based on our experimental and theoretical results, we determined that as much as 85% of the electron beam is scattered outside of the 10 µm diameter high pressures of 130 Pa. This is much more scattering than we had anticipated, based on previous papers on this subject, making these results incredibly important for anyone using variable pressure in the SEM.

Double insulated Faraday cup with a 10 µm aperture.

Unscattered Beam Percentage vs. Pressure: Theoretical

Unscattered Beam Percentage vs. Pressure: Experimental

Overall, I am very thankful for the opportunities that EDAX has given me this summer and in the past. As a member of the Applications Team, I was able to work alongside the Engineering, Software Development, Customer Support, and Sales teams in order to help provide customers with the best analysis tools for their needs. I also gained a deeper understanding of the research, data collection, and analysis processes for writing a paper to be published: a truly incredible experience for an undergraduate student. Above all, the plethora of knowledge and experience of those here at EDAX and their willingness to share this information with me and others has been the most valuable aspect of my time here.

Down Memory Lane

Sia Afshari, Global Marketing Manager, EDAX

For years I have been attending the Denver X-ray conference (DXC) and it is hard when it coincides with the Microscopy and Microanalysis Conference (M&M) as it has a few times in the past several years. It is just difficult for me to accept that the overlap is not avoidable!

My interests are twofold, marketing activities where my main responsibility lie, and technical sessions which still pique my curiosity and which are beneficial for future product development. In the past couple of years at M&M, it has been great to attend sessions devoted to the 50 year anniversaries of electron microscopy, technical evolution, and algorithms, where my colleagues have either been the subject of presentations or have given papers. I have had the fortune to meet and, in some cases, to reacquaint with some of the main contributors to the scientific advancement of electron microscopy.

Being at M&M, I have missed the final years of attendance at DXC of the “old-timers” who have retired. These are gentlemen, in the true meaning of the word, whom I have had the honor of knowing for over 30 years and who have been more than generous with their time with me. I recognize most of all their devotion and contribution in advancing x-ray analysis to where it is today. Their absence will be felt especially in the development of methodology and algorithm. As a friend, who was frustrated with the lack of availability of scientists with a deep knowledge in the field, recently put it, “these guys don’t grow on trees.”

Back at M&M this year, I listened to Frank Eggert talking about the “The P/B Method. About 50 Years a Hidden Champion”, and he brought back many memories. I recognized most of his referenced names, and the fact that they are no longer active in the industry! Looked around the room, I saw more people of the same hair color as mine (what is left). I thought about the XRF/XRD guys I used to know and who are also no longer around the industry. The old Pete Seeger song popped up in my mind with a new verse as; “where have all the algorithmic guys gone?”

When the Dust of M&M Settles, It’s Time to Take Stock….

Shawn Wallace, Applications Engineer, EDAX 

Shawn presents our 2nd Lunch & Learn session at M&M 2018.

For an applications engineer, M&M is our biggest and most stressful event. Back to back demos while making sure everything is perfect to truly show off the best you can offer, with presentations and poster thrown in for good measure. There is no real time to reflect during the show, so as the dust settles, I always like to reflect on the year past and the one coming (in our world it seems as though the year really begins and ends in August).

Over the past year, the EDAX EBSD world has seen major changes with the release of the Velocity™ detector. It was well received by our customers, which puts a smile on my face. Over the next year, you guys will have the system to play with and will really learn the power of it, showing that our hard work and time spent has really paid off. There is so much more in the works on the EBSD side that I wish I could tell you about. Stay tuned for that ride. It should be fun and exciting.

Velocity™ EBSD Camera

As for the EDS world, the release of the Elite T was a great group effort with many small changes behind the scenes making big differences to the product, with more to come.
That said, APEX™ still seems to steal the spotlight (sorry Matt!). With features being added quickly to each internal build, we see our customers’ needs being fulfilled one line of code at a time and in time, you will see them too.

EDAX webinar series.

While hardware and software are key, I think that it is just as important to reflect on all the interactions we have at the show with all our customers, partners and friends. It helps me understand what we did right (and wrong) on our journey in the last year. Between workshops, onsite training sessions, and shows, I see customers both at their work sites, seeing what they are working with, and out at a neutral site learning from their colleagues about what’s new in tech or new ways to answer interesting questions. This helps us all to understand your needs and wants, and where we as a community are going and growing.

With that in mind, I am turning this blog back over to you. Where do you see microanalytical technology going in the next year? What application areas do you see expanding? What is the best way for us to disseminate information to you, our users? (webinars, videos, blogs, workshops?) We invite you to Leave a Reply via the link below.